Redux Toolkit 入门指南
项目介绍
Redux Toolkit是Redux官方推荐的一套高效开发工具集,它旨在通过一组经过深思熟虑且“有意见”的API来简化Redux的配置与开发流程。该工具包着重解决Redux学习曲线陡峭、配置复杂以及书写大量样板代码的问题。它内置了对Redux中间件的支持(如默认集成的redux-thunk),提供了诸如createSlice、createReducer等函数来减少冗余代码,并引入了强大的数据管理特性——RTK Query,用于简化数据获取与缓存逻辑。
项目快速启动
要快速启动一个新的Redux Toolkit项目,你可以选择以下两种方式之一:
使用Vite模板(适用于React + TypeScript)
在终端执行以下命令,通过degit工具克隆Redux Toolkit的Vite模板:
npx degit reduxjs/redux-templates/packages/vite-template-redux my-app
cd my-app
npm install 或者 yarn
npm run dev 或者 yarn dev
创建Next.js项目(使用with-redux模板)
对于Next.js爱好者,可以这样操作:
npx create-next-app --example with-redux my-app
cd my-app
npm install 或者 yarn
npm run dev 或者 yarn dev
这两种方法都会自动配置好Redux Toolkit与React-Redux的环境,并提供一个基础示例。
应用案例和最佳实践
当你在项目中使用Redux Toolkit时,一个常见的最佳实践是利用createSlice来组织你的状态逻辑。例如,创建一个计数器切片:
import { createSlice } from '@reduxjs/toolkit';
const counterSlice = createSlice({
name: 'counter',
initialState: { value: 0 },
reducers: {
increment: (state) => {
state.value += 1;
},
decrement: (state) => {
state.value -= 1;
},
},
});
export const { increment, decrement } = counterSlice.actions;
export default counterSlice.reducer;
在你的组件中,则可以通过Redux Toolkit提供的useDispatch和useSelector来访问这些action和state:
import { useSelector, useDispatch } from 'react-redux';
import { increment, decrement } from './features/counter(counterSlice).js'; // 假设上面的slice文件命名为counterSlice.js
function Counter() {
const count = useSelector(state => state.counter.value);
const dispatch = useDispatch();
return (
<div>
<button onClick={() => dispatch(decrement())}>-</button>
<span>{count}</span>
<button onClick={() => dispatch(increment())}>+</button>
</div>
);
}
典型生态项目
Redux Toolkit通过其高度封装和灵活的设计,广泛应用于各种JavaScript项目中,尤其在基于React的应用中更为常见。结合@reduxjs/toolkit/query,可以进一步简化前后端数据交互过程,使得构建数据密集型应用变得更加便捷。
虽然特定的生态项目提及不多,但Redux Toolkit本身与许多前端框架和库兼容良好,比如与React、Next.js、Gatsby等的无缝集成,同时也常常搭配像是RTK Query这样的官方扩展来处理复杂的API调用,形成了一个强大的前端开发生态环境。
综上所述,Redux Toolkit不仅简化了Redux的学习和使用,还提升了开发效率,通过其优秀的设计,已成为现代Web应用中不可或缺的一部分。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00