Glaze项目中的自定义字符串包装类实现
在C++ JSON库Glaze中,开发者经常需要处理字符串格式转换的需求。本文将详细介绍如何在Glaze中创建自定义的字符串包装类,实现类似内置quoted_t/quoted功能的字符串处理能力。
需求背景
在实际开发中,我们经常遇到需要将JSON字符串从UTF-8编码转换为Latin1编码(ISO-8859-1)的需求。Glaze内置了quoted_t/quoted功能来处理字符串的特殊情况,但有时我们需要实现自己的字符串处理逻辑。
实现方案
1. 定义包装类结构
首先需要定义一个包装类结构体,该结构体需要包含两个关键元素:
glaze_wrapper静态常量:标识这是一个Glaze包装器- 被包装值的引用
struct Latin1String_t {
static constexpr bool glaze_wrapper = true;
using value_type = string;
string& val;
};
2. 实现序列化与反序列化
接下来需要为这个包装类实现JSON的序列化和反序列化逻辑:
// 反序列化实现(JSON -> Latin1)
template <> struct from<JSON, Latin1String_t> {
template <auto Opts>
static void op(Latin1String_t& value, is_context auto&& ctx, auto&&... args) {
string jsonString;
parse<JSON>::op<Opts>(jsonString, ctx, args...);
value.val = CharConv::Utf8ToLatin1(jsonString);
}
};
// 序列化实现(Latin1 -> JSON)
template <> struct to<JSON, Latin1String_t> {
template <auto Opts>
static void op(const Latin1String_t& value, is_context auto&& ctx, auto&&... args) {
string convertedString = CharConv::Latin1ToUtf8(value.val);
serialize<JSON>::op<Opts>(convertedString, ctx, args...);
}
};
3. 创建便捷包装函数
为了方便使用,可以创建一个工厂函数来生成包装器:
template <auto MemPtr>
inline constexpr decltype(auto) Latin1String_impl() noexcept {
return [](auto&& val) { return Latin1String_t{val.*MemPtr}; };
}
template <auto MemPtr>
constexpr auto Latin1String = Latin1String_impl<MemPtr>();
4. 在元数据中使用
最后,可以在Glaze的元数据定义中使用这个包装器:
template <> struct meta<CharacterData> {
static constexpr auto value = object(
"charId", &CharacterData::charId,
"firstName", Latin1String<&CharacterData::firstName>,
"lastName", Latin1String<&CharacterData::lastName>
);
};
常见问题与解决方案
在实现过程中,开发者可能会遇到以下问题:
-
模板语法错误:MSVC编译器可能会报错"error C2760: syntax error: '...' was unexpected here; expected ')'"。这通常是由于模板语法解析问题导致的。
-
重定义错误:当出现"redefinition of from<10>/to<10>"错误时,通常是因为头文件包含顺序问题。
解决方案:
- 确保在定义自定义包装器之前包含必要的Glaze头文件
- 正确的头文件包含顺序应该是:
#include <glaze/json/read.hpp> #include <glaze/json/write.hpp> // 然后才是自定义包装器的定义
技术要点总结
-
包装器标识:自定义包装器必须包含
glaze_wrapper = true静态成员,这是Glaze识别包装器的关键。 -
类型定义:通过
value_type指定被包装的实际类型,帮助Glaze进行类型推导。 -
转换逻辑:在序列化和反序列化操作中实现具体的编码转换逻辑,这里是UTF-8和Latin1之间的转换。
-
编译顺序:注意头文件包含顺序对模板特化的影响,这是C++模板元编程中常见的问题。
通过这种自定义包装器的方式,开发者可以灵活地扩展Glaze的字符串处理能力,满足各种特殊编码转换需求,同时保持代码的整洁性和可维护性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00