Glaze项目中的自定义字符串包装类实现
在C++ JSON库Glaze中,开发者经常需要处理字符串格式转换的需求。本文将详细介绍如何在Glaze中创建自定义的字符串包装类,实现类似内置quoted_t/quoted功能的字符串处理能力。
需求背景
在实际开发中,我们经常遇到需要将JSON字符串从UTF-8编码转换为Latin1编码(ISO-8859-1)的需求。Glaze内置了quoted_t/quoted功能来处理字符串的特殊情况,但有时我们需要实现自己的字符串处理逻辑。
实现方案
1. 定义包装类结构
首先需要定义一个包装类结构体,该结构体需要包含两个关键元素:
glaze_wrapper
静态常量:标识这是一个Glaze包装器- 被包装值的引用
struct Latin1String_t {
static constexpr bool glaze_wrapper = true;
using value_type = string;
string& val;
};
2. 实现序列化与反序列化
接下来需要为这个包装类实现JSON的序列化和反序列化逻辑:
// 反序列化实现(JSON -> Latin1)
template <> struct from<JSON, Latin1String_t> {
template <auto Opts>
static void op(Latin1String_t& value, is_context auto&& ctx, auto&&... args) {
string jsonString;
parse<JSON>::op<Opts>(jsonString, ctx, args...);
value.val = CharConv::Utf8ToLatin1(jsonString);
}
};
// 序列化实现(Latin1 -> JSON)
template <> struct to<JSON, Latin1String_t> {
template <auto Opts>
static void op(const Latin1String_t& value, is_context auto&& ctx, auto&&... args) {
string convertedString = CharConv::Latin1ToUtf8(value.val);
serialize<JSON>::op<Opts>(convertedString, ctx, args...);
}
};
3. 创建便捷包装函数
为了方便使用,可以创建一个工厂函数来生成包装器:
template <auto MemPtr>
inline constexpr decltype(auto) Latin1String_impl() noexcept {
return [](auto&& val) { return Latin1String_t{val.*MemPtr}; };
}
template <auto MemPtr>
constexpr auto Latin1String = Latin1String_impl<MemPtr>();
4. 在元数据中使用
最后,可以在Glaze的元数据定义中使用这个包装器:
template <> struct meta<CharacterData> {
static constexpr auto value = object(
"charId", &CharacterData::charId,
"firstName", Latin1String<&CharacterData::firstName>,
"lastName", Latin1String<&CharacterData::lastName>
);
};
常见问题与解决方案
在实现过程中,开发者可能会遇到以下问题:
-
模板语法错误:MSVC编译器可能会报错"error C2760: syntax error: '...' was unexpected here; expected ')'"。这通常是由于模板语法解析问题导致的。
-
重定义错误:当出现"redefinition of from<10>/to<10>"错误时,通常是因为头文件包含顺序问题。
解决方案:
- 确保在定义自定义包装器之前包含必要的Glaze头文件
- 正确的头文件包含顺序应该是:
#include <glaze/json/read.hpp> #include <glaze/json/write.hpp> // 然后才是自定义包装器的定义
技术要点总结
-
包装器标识:自定义包装器必须包含
glaze_wrapper = true
静态成员,这是Glaze识别包装器的关键。 -
类型定义:通过
value_type
指定被包装的实际类型,帮助Glaze进行类型推导。 -
转换逻辑:在序列化和反序列化操作中实现具体的编码转换逻辑,这里是UTF-8和Latin1之间的转换。
-
编译顺序:注意头文件包含顺序对模板特化的影响,这是C++模板元编程中常见的问题。
通过这种自定义包装器的方式,开发者可以灵活地扩展Glaze的字符串处理能力,满足各种特殊编码转换需求,同时保持代码的整洁性和可维护性。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0136AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









