AIMET 2.4.0版本发布:模型量化与优化的新进展
AIMET(AI Model Efficiency Toolkit)是由高通创新中心开发的开源工具库,专注于神经网络模型的量化、压缩和优化。作为业界领先的模型效率工具,AIMET帮助开发者在保持模型精度的同时,显著提升模型在边缘设备上的运行效率。最新发布的2.4.0版本带来了多项功能增强和问题修复,进一步提升了工具的实用性和稳定性。
ONNX相关改进
在ONNX支持方面,2.4.0版本引入了一项实用功能:现在可以选择仅导出模型的量化编码信息。这一改进为开发者提供了更大的灵活性,特别是在需要将量化信息与模型结构分开处理的场景下。例如,当需要在不同平台上部署同一模型时,可以复用相同的量化参数而无需重新导出整个模型。
此外,该版本还修复了ONNX相关的几个重要问题。移除了libpymo可执行文件对cublas的依赖,使得工具在更广泛的环境下可用。量化参数的处理也更加规范,现在y_zero_point和per-block scale都被明确表示为整数类型,这有助于提高量化参数在不同框架间转换时的兼容性。
通用功能增强
在通用功能方面,2.4.0版本将RMSNormalization添加到了默认的AIMET配置中。RMSNormalization是一种有效的归一化技术,在某些模型架构中可以替代传统的Layer Normalization。这一添加意味着开发者现在可以更方便地在模型优化流程中使用这一技术,而无需进行额外的配置。
PyTorch相关优化
对于PyTorch用户,2.4.0版本带来了多项性能改进。SeqMSE(Sequential Mean Square Error)优化算法现在能够更高效地处理嵌套模块,显著减少了优化时间。这一改进特别有利于处理复杂模型结构,如包含多个子模块的神经网络。
CrossLayerEqualization(跨层均衡)算法的行为也变得更加明确。新版本不再自动将ReLU6激活函数替换为ReLU,而是保留原始激活函数类型。这一变化使得优化过程更加透明,开发者可以更精确地控制模型的行为。
自动混合精度(AMP)功能也得到了增强。现在它会为模型输入创建独立的量化器组,这有助于更好地保持输入数据的精度,特别是在处理不同输入特性的情况下。
稳定性与兼容性提升
2.4.0版本还包含多项底层改进,提升了工具的稳定性和兼容性。这些改进虽然不直接表现为新功能,但对于确保工具在各种环境下的可靠运行至关重要。例如,修复了某些特定情况下可能出现的量化参数处理问题,优化了内存使用效率等。
总结
AIMET 2.4.0版本通过引入新功能、优化现有算法和修复已知问题,进一步巩固了其作为模型效率优化首选工具的地位。无论是ONNX、PyTorch还是TensorFlow用户,都能从这个版本中获得实质性的改进。特别是在模型量化、跨平台部署和计算效率优化方面,2.4.0版本提供了更加完善和稳定的解决方案。
对于正在寻求提升模型在边缘设备上运行效率的开发者来说,升级到AIMET 2.4.0版本将能够获得更好的工具支持和优化效果。该版本不仅关注功能的扩展,更注重提升用户体验和工具的可靠性,体现了AIMET项目持续优化和改进的承诺。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00