ChatGLM3微调后推理报错NotImplementedError问题分析与解决方案
问题背景
在使用ChatGLM3进行LoRA微调后,许多开发者在尝试使用inference_hf.py脚本进行推理时遇到了NotImplementedError错误。这个问题主要出现在加载微调后的模型权重文件时,具体报错位置在set_input_embeddings方法处。
错误现象
当开发者执行以下步骤时会出现问题:
- 使用finetune_hf.py脚本成功完成LoRA微调,生成模型权重文件
- 尝试使用inference_hf.py脚本进行推理
- 程序在加载模型时抛出NotImplementedError异常
错误信息表明模型缺少set_input_embeddings方法的实现,导致无法正常加载微调后的权重。
问题根源分析
经过深入调查,这个问题主要由以下几个因素导致:
-
PEFT库版本兼容性问题:当使用peft>=0.8.0版本时会出现此问题,而peft==0.7.0版本则能正常工作。这是由于新版本PEFT库的行为变更导致的。
-
模型类方法缺失:ChatGLMModel类中确实缺少set_input_embeddings方法的实现,这是Hugging Face模型接口规范要求的方法。
-
Transformers版本影响:虽然最初怀疑是Transformers版本问题,但实际测试表明这与Transformers库版本关系不大。
解决方案
方案一:修改模型代码(推荐)
在ChatGLM3的modeling_chatglm.py文件中,为ChatGLMModel类添加set_input_embeddings方法实现:
def set_input_embeddings(self, value):
self.embedding.word_embeddings = value
这个方法应该添加在get_input_embeddings方法之后,get_prompt方法之前的位置。
方案二:降级PEFT库版本
将peft库降级到0.7.0版本可以避免此问题:
pip install peft==0.7.0
方案三:使用替代推理方式
如果暂时不想修改代码,可以使用以下Python代码进行推理:
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("your_finetune_model_path", trust_remote_code=True)
model = AutoModel.from_pretrained("your_finetune_model_path", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
技术细节说明
-
LoRA微调速度问题:有开发者提到LoRA微调速度很快(约5分钟),这是正常现象。LoRA作为一种参数高效微调方法,只训练少量参数,因此速度比全参数微调快很多。
-
模型加载机制:当使用PEFT进行微调后,模型加载时需要正确处理基础模型和适配器权重的关系。set_input_embeddings方法是这个过程中的关键环节。
-
版本兼容性:深度学习生态中库的快速迭代常常带来兼容性问题,保持关键库版本的稳定性是避免此类问题的有效方法。
最佳实践建议
-
在开始微调前,确认环境中的关键库版本:
- peft: 0.7.0
- transformers: 4.36+
-
对于生产环境,建议采用方案一(修改模型代码),因为它不依赖特定库版本,具有更好的可移植性。
-
定期检查项目仓库的更新,官方可能会在未来版本中修复此问题。
通过以上分析和解决方案,开发者应该能够顺利解决ChatGLM3微调后推理报错的问题,并继续进行模型部署和应用开发工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00