CodeQL JavaScript代码注入问题检测的近期分析
问题背景
在最新版本的CodeQL JavaScript分析引擎中,发现了一个关于代码注入问题检测的重要情况。该问题导致原本应该被检测到的基础代码注入场景出现了漏报情况。
问题表现
一个典型的JavaScript代码注入问题示例不再被最新版本的CodeQL查询检测到。示例代码如下:
function main() {
let userInput = new URLSearchParams(window.location.search).get('input');
eval(userInput);
}
main()
这段代码从URL查询参数中获取用户输入,并直接传递给eval函数执行,这显然是一个典型的安全问题。然而,最新版本的CodeQL查询却未能识别这一风险模式。
技术分析
旧版本检测机制
在旧版本的CodeQL中,使用的是基于Configuration的检测方法,能够正确识别这种通过URLSearchParams获取用户输入并传递给eval函数的代码路径。这种检测机制通过数据流分析追踪用户输入从来源点到危险函数的传播路径。
新版本检测机制
新版本采用了改进的CodeInjectionFlow::PathGraph分析框架,理论上应该提供更精确的分析能力。然而,在这个特定场景下,由于对URLSearchParams方法的支持不完善,导致数据流分析在该节点中断,无法继续追踪到eval函数的参数。
问题根源
经过技术团队确认,这个问题是由于新版本中URLSearchParams方法的传播逻辑存在不足造成的。当用户输入通过URLSearchParams.get()方法获取时,数据流分析未能正确建立从源头(window.location.search)到最终使用点(eval参数)的完整路径。
临时解决方案
在官方修复发布前,开发者可以采取以下措施:
- 暂时回退到使用旧版本的检测查询
- 对使用URLSearchParams获取用户输入的代码进行人工审查
- 在代码中添加显式的数据流标记帮助分析器识别
安全建议
无论检测工具是否能够识别,开发者都应该避免直接将用户输入传递给eval等可执行代码的函数。建议的安全实践包括:
- 严格验证所有用户输入
- 使用安全的替代方案代替eval
- 实施内容安全策略(CSP)限制脚本执行
官方响应
CodeQL JavaScript团队已确认这是一个新引入的不足,并正在积极开发修复方案。预计在下一个版本更新中会解决这个问题,恢复对这类代码注入模式的检测能力。
这个问题提醒我们,即使是成熟的静态分析工具也需要持续验证其检测能力,特别是在版本更新后,应当重新评估其对关键安全问题的覆盖情况。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00