CatBoostLSS 项目亮点解析
2025-05-24 02:05:40作者:凤尚柏Louis
1. 项目基础介绍
CatBoostLSS 是一个开源项目,基于 CatBoost 模型进行了扩展,使其能够进行概率建模。该项目通过预测单变量响应变量的整个条件分布,而不仅仅是条件均值,为用户提供了更深入的洞见和数据生成过程的理解。CatBoostLSS 支持广泛的连续、离散以及混合离散-连续分布,使得用户能够从概率预测中获得预测区间和感兴趣的量化值。
2. 项目代码目录及介绍
项目的代码目录如下:
CatBoostLSS/
├── catboostlss/
│ ├── __init__.py
│ ├── estimators.py
│ ├── families.py
│ └── utils.py
├── plots/
│ ├── __init__.py
│ ├── plot_distribution.py
│ └── plot_prediction_intervals.py
├── python/
│ ├── __init__.py
│ ├── data_preprocessing.py
│ ├── model_training.py
│ └── model_evaluation.py
├── test/
│ ├── __init__.py
│ ├── test_data_preprocessing.py
│ ├── test_model_training.py
│ └── test_model_evaluation.py
├── LICENSE
└── README.md
catboostlss/: 包含模型的核心实现,包括估计器(estimators)、分布族(families)和工具函数(utils)。plots/: 提供了绘制分布和预测区间的函数。python/: 包含数据预处理、模型训练和评估的脚本。test/: 包含对项目不同模块的测试代码。
3. 项目亮点功能拆解
CatBoostLSS 的亮点功能主要包括:
- 概率建模: 支持对整个条件分布的建模,而不仅仅是均值。
- 分布选择: 提供了多种分布族选择,包括连续、离散和混合分布。
- 预测区间和量化值: 能够基于概率预测生成预测区间和感兴趣的量化值。
4. 项目主要技术亮点拆解
技术亮点包括:
- 扩展 CatBoost: 在 CatBoost 的基础上增加了概率建模的能力。
- 灵活的模型配置: 用户可以根据需求选择不同的分布族和模型参数。
- 完善的测试: 项目包含了多个测试模块,确保代码的稳定性和可靠性。
5. 与同类项目对比的亮点
相较于同类项目,CatBoostLSS 的亮点在于:
- 更全面的概率建模: 相比于只预测条件均值的模型,CatBoostLSS 能够提供更全面的数据生成过程的洞见。
- 广泛的适用性: 支持多种分布,使得模型能够适应更多类型的数据和场景。
- 高度可定制: 用户可以根据具体需求进行模型配置,提高了模型的灵活性和适用性。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671