解决HuggingFace PEFT库中LoRA微调时的Embedding层尺寸不匹配问题
2025-05-13 22:06:43作者:裴麒琰
背景介绍
在使用HuggingFace的PEFT(Parameter-Efficient Fine-Tuning)库进行LoRA(Low-Rank Adaptation)微调时,开发者可能会遇到一个常见问题:当原始预训练模型的Embedding层词汇表大小与当前tokenizer的实际词汇量不一致时,会导致模型加载失败。这种情况通常表现为"size mismatch"错误,特别是在处理自定义数据集或特定领域任务时。
问题分析
以Mamba模型为例,原始预训练模型的Embedding层可能配置为Embedding(50280, 2560),而实际tokenizer的词汇量只有50277。这种差异通常源于:
- 预训练阶段使用了更大的词汇表
- 模型发布后tokenizer经过了调整或精简
- 用户自定义tokenizer导致词汇量变化
当使用PEFT的LoRA配置对Embedding层进行适配时,这种尺寸不匹配会导致无法加载预训练权重,抛出类似以下的错误:
RuntimeError: size mismatch for base_model.model.backbone.embeddings.lora_embedding_A.default: copying a param with shape torch.Size([64, 50280]) from checkpoint, the shape in current model is torch.Size([64, 50277])
解决方案
方法一:单独加载适配器
最可靠的解决方案是分别加载基础模型和适配器权重:
- 首先加载基础模型:
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.bfloat16)
- 然后单独加载适配器:
model.load_adapter(adapter_path, "default")
这种方法避免了直接使用AutoPeftModelForCausalLM.from_pretrained()
时遇到的尺寸检查问题。
方法二:调整LoRA配置
如果不需要对Embedding层进行适配,可以在LoRA配置中排除Embedding层:
lora_config = LoraConfig(
r=64,
target_modules=["x_proj", "in_proj", "out_proj"], # 移除了embeddings
task_type="CAUSAL_LM",
bias="none",
use_rslora=True,
)
方法三:词汇表对齐
对于高级用户,可以考虑:
- 扩展当前tokenizer的词汇表以匹配原始模型
- 或者修改模型Embedding层尺寸以匹配当前tokenizer
但这种方法需要谨慎处理,可能会影响模型性能。
最佳实践建议
- 在使用PEFT进行微调前,先检查模型和tokenizer的词汇表尺寸是否匹配
- 对于Embedding层的适配要特别小心,通常其他层的适配已经能带来足够好的效果
- 考虑使用
model.resize_token_embeddings(len(tokenizer))
来显式调整Embedding层尺寸 - 保存完整的微调配置,包括LoRA参数和目标模块选择,便于复现和部署
总结
处理PEFT中Embedding层尺寸不匹配问题时,单独加载适配器是最稳健的解决方案。理解模型架构和tokenizer之间的关系对于成功进行参数高效微调至关重要。通过合理配置LoRA目标模块和采用分步加载策略,可以有效规避这类尺寸不匹配问题,实现模型的顺利微调和部署。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++090Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
969
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17