解决HuggingFace PEFT库中LoRA微调时的Embedding层尺寸不匹配问题
2025-05-13 10:24:13作者:裴麒琰
背景介绍
在使用HuggingFace的PEFT(Parameter-Efficient Fine-Tuning)库进行LoRA(Low-Rank Adaptation)微调时,开发者可能会遇到一个常见问题:当原始预训练模型的Embedding层词汇表大小与当前tokenizer的实际词汇量不一致时,会导致模型加载失败。这种情况通常表现为"size mismatch"错误,特别是在处理自定义数据集或特定领域任务时。
问题分析
以Mamba模型为例,原始预训练模型的Embedding层可能配置为Embedding(50280, 2560),而实际tokenizer的词汇量只有50277。这种差异通常源于:
- 预训练阶段使用了更大的词汇表
- 模型发布后tokenizer经过了调整或精简
- 用户自定义tokenizer导致词汇量变化
当使用PEFT的LoRA配置对Embedding层进行适配时,这种尺寸不匹配会导致无法加载预训练权重,抛出类似以下的错误:
RuntimeError: size mismatch for base_model.model.backbone.embeddings.lora_embedding_A.default: copying a param with shape torch.Size([64, 50280]) from checkpoint, the shape in current model is torch.Size([64, 50277])
解决方案
方法一:单独加载适配器
最可靠的解决方案是分别加载基础模型和适配器权重:
- 首先加载基础模型:
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.bfloat16)
- 然后单独加载适配器:
model.load_adapter(adapter_path, "default")
这种方法避免了直接使用AutoPeftModelForCausalLM.from_pretrained()时遇到的尺寸检查问题。
方法二:调整LoRA配置
如果不需要对Embedding层进行适配,可以在LoRA配置中排除Embedding层:
lora_config = LoraConfig(
r=64,
target_modules=["x_proj", "in_proj", "out_proj"], # 移除了embeddings
task_type="CAUSAL_LM",
bias="none",
use_rslora=True,
)
方法三:词汇表对齐
对于高级用户,可以考虑:
- 扩展当前tokenizer的词汇表以匹配原始模型
- 或者修改模型Embedding层尺寸以匹配当前tokenizer
但这种方法需要谨慎处理,可能会影响模型性能。
最佳实践建议
- 在使用PEFT进行微调前,先检查模型和tokenizer的词汇表尺寸是否匹配
- 对于Embedding层的适配要特别小心,通常其他层的适配已经能带来足够好的效果
- 考虑使用
model.resize_token_embeddings(len(tokenizer))来显式调整Embedding层尺寸 - 保存完整的微调配置,包括LoRA参数和目标模块选择,便于复现和部署
总结
处理PEFT中Embedding层尺寸不匹配问题时,单独加载适配器是最稳健的解决方案。理解模型架构和tokenizer之间的关系对于成功进行参数高效微调至关重要。通过合理配置LoRA目标模块和采用分步加载策略,可以有效规避这类尺寸不匹配问题,实现模型的顺利微调和部署。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217