Vocode核心库中ChatGPT动作参数传递问题的分析与解决
2025-06-25 08:49:56作者:姚月梅Lane
在基于Vocode核心库开发语音对话系统时,一个常见的技术挑战是确保ChatGPT代理能够正确地将参数传递给自定义动作(action)。本文将深入分析这一问题的根源,并提供完整的解决方案。
问题现象
开发者在实现一个保存用户数据的自定义动作时发现,虽然ChatGPT代理正确识别了需要触发动作的时机,但动作执行时却没有收到预期的参数。具体表现为:
- 代理正确识别了用户的姓名和邮箱信息
- 代理触发了保存用户数据的动作
- 但动作接收到的参数为空字典
{},而非预期的{'name':'test','email_address':'test@test.com'}
根本原因分析
通过调试发现,问题出在Pydantic模型的版本兼容性上。Vocode核心库内部使用的是Pydantic v1版本,而开发者可能使用了Pydantic v2的语法定义动作输入模型。
关键发现点:
- 在动作创建阶段,参数确实被正确解析为
SaveUserDataActionInput实例 - 但在转换为
ActionInput时,参数被错误地转换为了空的BaseModel实例 - 这种类型擦除现象是Pydantic版本不匹配的典型表现
解决方案
要解决此问题,必须确保使用与Vocode核心库兼容的Pydantic v1版本来定义所有动作相关的模型:
from pydantic.v1 import BaseModel, Field
class SaveUserDataActionInput(BaseModel):
name: str = Field(..., description="验证过的用户名")
email_address: str = Field(..., description="验证过的用户邮箱")
完整实现示例
以下是经过验证的正确实现方式:
from pydantic.v1 import BaseModel, Field
from typing import Dict, Any, Optional, Type
from vocode.streaming.action.base_action import BaseAction
from vocode.streaming.models.actions import (
ActionInput,
ActionOutput,
VocodeActionConfig,
FunctionCallActionTrigger,
)
class SaveUserDataActionInput(BaseModel):
name: str = Field(..., description="验证过的用户名")
email_address: str = Field(..., description="验证过的用户邮箱")
class SaveUserDataActionOutput(BaseModel):
message: str
class SaveUserDataActionConfig(VocodeActionConfig, type="save_user_data"):
action_trigger: FunctionCallActionTrigger = FunctionCallActionTrigger(
type="action_trigger_function_call",
function_name="save_user_data"
)
class SaveUserDataAction(BaseAction[
SaveUserDataActionConfig,
SaveUserDataActionInput,
SaveUserDataActionOutput
]):
description = "保存用户联系信息到数据库"
async def run(self, action_input: ActionInput[SaveUserDataActionInput]):
# 现在可以正确访问action_input.params.name和action_input.params.email_address
...
最佳实践建议
- 版本一致性:确保项目中所有Pydantic模型都使用v1版本
- 类型注解:为动作类明确指定输入输出类型参数
- 调试技巧:在动作的
create_action_input方法中添加断点,验证参数转换过程 - 错误处理:为动作添加参数验证逻辑,确保必要参数存在
总结
在Vocode核心库中实现自定义动作时,Pydantic版本兼容性是需要特别注意的关键点。通过使用正确的Pydantic v1版本定义模型,可以确保ChatGPT代理与自定义动作之间的参数传递正常工作。这一问题也提醒我们,在集成不同库时,版本依赖管理的重要性不容忽视。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110