Vocode核心库中ChatGPT动作参数传递问题的分析与解决
2025-06-25 15:11:07作者:姚月梅Lane
在基于Vocode核心库开发语音对话系统时,一个常见的技术挑战是确保ChatGPT代理能够正确地将参数传递给自定义动作(action)。本文将深入分析这一问题的根源,并提供完整的解决方案。
问题现象
开发者在实现一个保存用户数据的自定义动作时发现,虽然ChatGPT代理正确识别了需要触发动作的时机,但动作执行时却没有收到预期的参数。具体表现为:
- 代理正确识别了用户的姓名和邮箱信息
- 代理触发了保存用户数据的动作
- 但动作接收到的参数为空字典
{},而非预期的{'name':'test','email_address':'test@test.com'}
根本原因分析
通过调试发现,问题出在Pydantic模型的版本兼容性上。Vocode核心库内部使用的是Pydantic v1版本,而开发者可能使用了Pydantic v2的语法定义动作输入模型。
关键发现点:
- 在动作创建阶段,参数确实被正确解析为
SaveUserDataActionInput实例 - 但在转换为
ActionInput时,参数被错误地转换为了空的BaseModel实例 - 这种类型擦除现象是Pydantic版本不匹配的典型表现
解决方案
要解决此问题,必须确保使用与Vocode核心库兼容的Pydantic v1版本来定义所有动作相关的模型:
from pydantic.v1 import BaseModel, Field
class SaveUserDataActionInput(BaseModel):
name: str = Field(..., description="验证过的用户名")
email_address: str = Field(..., description="验证过的用户邮箱")
完整实现示例
以下是经过验证的正确实现方式:
from pydantic.v1 import BaseModel, Field
from typing import Dict, Any, Optional, Type
from vocode.streaming.action.base_action import BaseAction
from vocode.streaming.models.actions import (
ActionInput,
ActionOutput,
VocodeActionConfig,
FunctionCallActionTrigger,
)
class SaveUserDataActionInput(BaseModel):
name: str = Field(..., description="验证过的用户名")
email_address: str = Field(..., description="验证过的用户邮箱")
class SaveUserDataActionOutput(BaseModel):
message: str
class SaveUserDataActionConfig(VocodeActionConfig, type="save_user_data"):
action_trigger: FunctionCallActionTrigger = FunctionCallActionTrigger(
type="action_trigger_function_call",
function_name="save_user_data"
)
class SaveUserDataAction(BaseAction[
SaveUserDataActionConfig,
SaveUserDataActionInput,
SaveUserDataActionOutput
]):
description = "保存用户联系信息到数据库"
async def run(self, action_input: ActionInput[SaveUserDataActionInput]):
# 现在可以正确访问action_input.params.name和action_input.params.email_address
...
最佳实践建议
- 版本一致性:确保项目中所有Pydantic模型都使用v1版本
- 类型注解:为动作类明确指定输入输出类型参数
- 调试技巧:在动作的
create_action_input方法中添加断点,验证参数转换过程 - 错误处理:为动作添加参数验证逻辑,确保必要参数存在
总结
在Vocode核心库中实现自定义动作时,Pydantic版本兼容性是需要特别注意的关键点。通过使用正确的Pydantic v1版本定义模型,可以确保ChatGPT代理与自定义动作之间的参数传递正常工作。这一问题也提醒我们,在集成不同库时,版本依赖管理的重要性不容忽视。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.9 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1