Vocode核心库中ChatGPT动作参数传递问题的分析与解决
2025-06-25 23:08:50作者:姚月梅Lane
在基于Vocode核心库开发语音对话系统时,一个常见的技术挑战是确保ChatGPT代理能够正确地将参数传递给自定义动作(action)。本文将深入分析这一问题的根源,并提供完整的解决方案。
问题现象
开发者在实现一个保存用户数据的自定义动作时发现,虽然ChatGPT代理正确识别了需要触发动作的时机,但动作执行时却没有收到预期的参数。具体表现为:
- 代理正确识别了用户的姓名和邮箱信息
- 代理触发了保存用户数据的动作
- 但动作接收到的参数为空字典
{}
,而非预期的{'name':'test','email_address':'test@test.com'}
根本原因分析
通过调试发现,问题出在Pydantic模型的版本兼容性上。Vocode核心库内部使用的是Pydantic v1版本,而开发者可能使用了Pydantic v2的语法定义动作输入模型。
关键发现点:
- 在动作创建阶段,参数确实被正确解析为
SaveUserDataActionInput
实例 - 但在转换为
ActionInput
时,参数被错误地转换为了空的BaseModel
实例 - 这种类型擦除现象是Pydantic版本不匹配的典型表现
解决方案
要解决此问题,必须确保使用与Vocode核心库兼容的Pydantic v1版本来定义所有动作相关的模型:
from pydantic.v1 import BaseModel, Field
class SaveUserDataActionInput(BaseModel):
name: str = Field(..., description="验证过的用户名")
email_address: str = Field(..., description="验证过的用户邮箱")
完整实现示例
以下是经过验证的正确实现方式:
from pydantic.v1 import BaseModel, Field
from typing import Dict, Any, Optional, Type
from vocode.streaming.action.base_action import BaseAction
from vocode.streaming.models.actions import (
ActionInput,
ActionOutput,
VocodeActionConfig,
FunctionCallActionTrigger,
)
class SaveUserDataActionInput(BaseModel):
name: str = Field(..., description="验证过的用户名")
email_address: str = Field(..., description="验证过的用户邮箱")
class SaveUserDataActionOutput(BaseModel):
message: str
class SaveUserDataActionConfig(VocodeActionConfig, type="save_user_data"):
action_trigger: FunctionCallActionTrigger = FunctionCallActionTrigger(
type="action_trigger_function_call",
function_name="save_user_data"
)
class SaveUserDataAction(BaseAction[
SaveUserDataActionConfig,
SaveUserDataActionInput,
SaveUserDataActionOutput
]):
description = "保存用户联系信息到数据库"
async def run(self, action_input: ActionInput[SaveUserDataActionInput]):
# 现在可以正确访问action_input.params.name和action_input.params.email_address
...
最佳实践建议
- 版本一致性:确保项目中所有Pydantic模型都使用v1版本
- 类型注解:为动作类明确指定输入输出类型参数
- 调试技巧:在动作的
create_action_input
方法中添加断点,验证参数转换过程 - 错误处理:为动作添加参数验证逻辑,确保必要参数存在
总结
在Vocode核心库中实现自定义动作时,Pydantic版本兼容性是需要特别注意的关键点。通过使用正确的Pydantic v1版本定义模型,可以确保ChatGPT代理与自定义动作之间的参数传递正常工作。这一问题也提醒我们,在集成不同库时,版本依赖管理的重要性不容忽视。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K