OpenStorm 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
OpenStorm 是一个开源的3D雷达查看器,它使用 Unreal Engine 5 作为基础,通过自定义的体积光线追踪着色器,可以显示整个雷达体积。OpenStorm 支持多种雷达数据的显示,包括基础产品和派生产品,并且能够在 Linux 和 Windows 系统上运行,支持 NEXRAD 和 ODIM H5 雷达数据格式。
该项目主要使用以下编程语言:
- C++
- C
- Makefile
2. 项目使用的关键技术和框架
OpenStorm 使用了以下关键技术和框架:
- Unreal Engine 5:作为游戏引擎,提供了强大的图形渲染能力。
- Volumetric Ray Marching Shader:用于渲染雷达体积数据。
- HDF5:用于读取欧洲 ODIM 雷达数据。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装 OpenStorm 之前,请确保您的系统满足以下要求:
- 安装了 Unreal Engine 5.2 或更高版本。
- 具备一定的编程基础,尤其是 C++。
- 安装了 Git。
安装步骤
-
克隆项目
打开命令行窗口,使用以下命令克隆 OpenStorm 仓库:
git clone https://github.com/JordanSchlick/OpenStorm.git -
获取子模块
在项目目录下,运行以下命令获取子模块:
git submodule update --init --recursive -
生成 Visual Studio 项目文件
在 OpenStorm 目录中,右键点击
OpenStorm.uproject文件,选择 "Generate Visual Studio project files"。 -
打开 Visual Studio 解决方案
使用 Visual Studio 打开生成的解决方案文件。
-
构建项目
在 Visual Studio 中,按下
Ctrl+Shift+B来构建项目。 -
打开 Unreal Engine 项目
构建完成后,打开 Unreal Engine 编辑器,选择 "Open Project",找到并打开 OpenStorm 项目。
-
获取数据文件
由于一些较大的数据文件没有包含在仓库中,你需要从最新发布的版本中获取这些文件。你可以将整个
Content/Data文件夹复制到项目中,以获取以下文件:- 高程数据:
Content/Data/Map/elevation.bin.gz - 卫星图像:
Content/Data/Map/Tiles/ImageryOnly.tar - GIS 地图数据文件:
Content/Data/Map/GIS/ - 演示雷达文件:
Content/Data/Demo/
- 高程数据:
-
可选安装 HDF5 支持
如果需要支持欧洲 ODIM 雷达数据,可以克隆 HDF5 仓库到
OpenStorm/Source/OpenStorm/Radar/Deps目录:cd OpenStorm/Source/OpenStorm/Radar/Deps git clone https://github.com/JordanSchlick/hdf5.git注意:这会增加编译时间,并且可能导致不兼容。
-
配置 Visual Studio 环境
为了在 Visual Studio Code 中启用智能感知和构建,你需要创建一个到 Unreal Engine 安装目录的符号链接。以下是在 Windows 和 Linux 系统中的示例:
-
Windows 示例(需要管理员权限):
mklink /D UnrealEngine "C:\files\Epic\UE_5.2\" -
Linux 示例:
ln -s "/path/to/UnrealEngine" UnrealEngine
请确保链接的目录包含了
Engine文件夹。 -
完成以上步骤后,你应该能够成功运行 OpenStorm 项目,并开始查看雷达数据。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00