Trackintel 开源项目教程
2024-09-17 20:30:41作者:秋阔奎Evelyn
1. 项目介绍
Trackintel 是一个专注于人类移动性数据分析的 Python 库。它提供了一个分层的数据模型,用于处理和分析时空跟踪数据,特别适用于地理信息系统(GIS)和交通规划等领域。Trackintel 的核心功能包括数据的导入、预处理、质量评估、语义丰富、定量分析、挖掘任务以及数据可视化。
Trackintel 基于 Pandas 和 GeoPandas,支持多种数据格式的导入和导出,如 CSV 文件、GeoPandas 数据框和 PostGIS 数据库。此外,它还提供了对流行公共数据集(如 Geolife)的特定数据读取器。
2. 项目快速启动
安装
推荐使用 conda 安装 Trackintel:
conda install -c conda-forge trackintel
或者使用 pip 安装:
pip install trackintel
快速启动示例
以下是一个简单的示例,展示如何使用 Trackintel 进行数据导入、数据模型生成、可视化和分析。
import trackintel as ti
# 1. 从 CSV 文件导入位置数据
pfs = ti.io.read_positionfixes_csv("examples/data/pfs.csv", sep="\t", index_col="id")
# 2. 生成停留点和轨迹
pfs, sp = pfs.generate_staypoints(method='sliding')
pfs, tpls = pfs.generate_triplegs(sp, method='between_staypoints')
# 3. 可视化生成的轨迹
ti.plot(positionfixes=pfs, staypoints=sp, triplegs=tpls, radius_sp=10)
# 4. 分析:预测交通模式标签
tpls = tpls.predict_transport_mode()
# 5. 保存结果
sp.to_csv(r'examples/data/sp.csv')
tpls.to_csv(r'examples/data/tpls.csv')
3. 应用案例和最佳实践
应用案例
Trackintel 可以应用于多种场景,如:
- 交通规划:分析城市交通流量,优化交通路线。
- 健康监测:跟踪个人活动轨迹,评估健康状况。
- 旅游分析:分析游客行为,优化旅游路线和推荐系统。
最佳实践
- 数据预处理:在进行分析之前,确保数据经过适当的预处理,如过滤异常值和填补缺失值。
- 语义丰富:使用 Trackintel 提供的功能对数据进行语义丰富,如添加活动标签和交通模式。
- 可视化:使用 Trackintel 的可视化功能,直观展示分析结果,帮助理解数据。
4. 典型生态项目
Trackintel 可以与其他开源项目结合使用,扩展其功能:
- GeoPandas:用于地理空间数据的处理和分析。
- OSMnx:用于从 OpenStreetMap 获取和分析街道网络数据。
- scikit-learn:用于机器学习任务,如交通模式预测。
通过结合这些项目,可以构建更复杂的分析和应用系统。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219