Guardrails与Langchain AgentExecutor集成的最佳实践
概述
在构建基于大语言模型(LLM)的应用时,Guardrails和Langchain是两个非常强大的工具。Guardrails提供了内容验证和安全防护功能,而Langchain则简化了LLM应用的开发流程。本文将详细介绍如何正确地将Guardrails与Langchain的AgentExecutor进行集成,特别是针对流式处理场景。
常见集成问题分析
许多开发者在尝试将Guardrails与Langchain的AgentExecutor集成时会遇到以下典型问题:
-
类型错误:当尝试在Langchain的RunnableSequence中间环节插入Guard时,会出现
TypeError: RunnableSequence._transform() got an unexpected keyword argument 'tools'错误。 -
API缺失错误:在某些集成位置会出现
ValueError: API must be provided错误。 -
验证时机不当:Guard验证在Agent执行完成前就被触发,导致验证无效。
问题根源
这些问题的根本原因在于对Langchain执行流程的理解不足。Langchain的AgentExecutor工作流程包含多个阶段:
- 工具绑定阶段:将工具定义转换为OpenAI兼容格式
- 提示工程阶段:构建完整的提示信息
- 模型调用阶段:实际调用LLM
- 输出解析阶段:解析模型返回结果
- 工具执行阶段:执行工具调用
- 结果整合阶段:整合所有步骤结果
如果在不恰当的阶段插入Guard验证,就会导致上述错误。
正确集成方案
经过深入分析,正确的集成方式是将Guard放在整个AgentExecutor之后,而不是中间环节。这种架构有以下优势:
- 确保所有处理流程已完成
- 能够验证最终输出结果
- 避免干扰Langchain内部执行流程
以下是正确的代码结构示例:
# 创建Agent组件链
agent = (
RunnablePassthrough.assign(
agent_scratchpad=lambda x: format_to_openai_tool_messages(
x["intermediate_steps"]
)
)
| prompt
| llm_with_tools
| OpenAIToolsAgentOutputParser()
)
# 创建执行器
agent_executor = AgentExecutor(agent=agent, tools=tools)
# 在最后添加Guard验证
chain = agent_executor | guard
实际应用示例
假设我们需要开发一个文档检索系统,要求输出中必须包含特定关键词"apricot",我们可以这样实现:
# 定义文档检索工具
@tool
def get_retriever_docs(query: str) -> list[Document]:
"""返回检索到的文档列表"""
return [Document(page_content="测试文档包含秘密代码'blue-green-apricot-brownie-cake-mousepad'")]
# 设置Guard验证规则
topic = "apricot"
guard = Guard().use(RegexMatch(topic, match_type="search", on_fail="filter"))
# 构建完整处理链
chain = agent_executor | guard
# 执行查询
query = "调用get_retriever_docs并告诉我文档中的秘密"
result = chain.invoke({"input":query})
性能考量
对于流式处理场景(streaming=True),需要注意:
- Guard验证会等待完整响应后才执行
- 验证过程会增加少量延迟
- 对于实时性要求高的场景,可以考虑异步验证
总结
将Guardrails与Langchain集成时,关键在于理解Langchain的执行流程和选择合适的集成点。通过在AgentExecutor之后添加Guard验证,可以确保:
- 所有工具调用和结果整合已完成
- 验证的是最终输出结果
- 不干扰Langchain内部执行机制
这种架构既保持了Langchain的灵活性,又通过Guardrails增加了内容安全性和可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00