Seurat项目中的参考映射问题与解决方案
问题背景
在使用Seurat v5进行单细胞数据分析时,研究人员经常会遇到数据集整合后的参考映射问题。具体表现为:当尝试将已整合的多个数据集作为参考集,对新数据集进行细胞类型注释时,系统会报错提示"Given reference assay (SCT) has 4 reference sct models"。
问题分析
这个错误的核心在于Seurat v5的SCTransform处理方式与参考映射功能之间的兼容性问题。当使用SCTransform方法处理多个数据集并进行整合后,每个原始数据集都会保留自己的SCTransform模型信息。而在进行参考映射时,FindTransferAnchors函数期望参考集只包含一个统一的SCTransform模型。
技术细节
-
数据整合流程:用户通常会使用SCTransform方法对每个数据集进行归一化处理,然后使用Harmony等方法进行数据整合,最后得到包含多个SCTransform模型的整合数据集。
-
参考映射要求:FindTransferAnchors函数在设计上要求参考集必须基于单一的SCTransform模型,这样才能确保特征选择和锚点查找的一致性。
解决方案
目前推荐的解决方案是采用Seurat v3的整合方式生成"integrated"分析层:
- 使用传统的标准化方法(如LogNormalize)而非SCTransform进行预处理
- 执行FindVariableFeatures和ScaleData
- 使用CCA或RPCA等方法进行数据整合
- 生成"integrated"分析层作为参考集
这种方法虽然不如SCTransform先进,但能确保参考映射功能的正常使用。
未来展望
Seurat开发团队已经意识到这个问题,并正在努力改进SCTransform与参考映射功能的兼容性。预计在未来的版本中,用户将能够直接使用SCTransform处理后的整合数据集作为参考集,而无需采用变通方法。
实践建议
对于需要使用SCTransform又需要进行参考映射的研究人员,可以考虑以下两种策略:
- 分步处理:先使用SCTransform进行探索性分析,确定细胞类型注释后,再使用传统方法重新处理数据生成参考集
- 等待更新:关注Seurat的版本更新,等待官方解决此兼容性问题
这个问题的存在反映了单细胞分析流程中标准化方法与下游分析工具之间需要更好的协调,也是生物信息学工具开发中常见的挑战之一。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00