NuScenes数据集转KITTI格式时的数据维度问题解析
在使用NuScenes-devkit工具将NuScenes数据集转换为KITTI格式时,开发者可能会遇到输出数据维度不匹配的问题。本文深入分析这一现象的原因,并提供解决方案。
问题现象
当使用NuScenes-devkit中的export_kitti.py脚本转换数据时,输出的标注文件每行包含16个元素,而标准的KITTI格式通常只需要15个元素。具体表现为:
['barrier', '0.00', '4', '-10.00', '0.00', '519.72', '58.90', '575.55', '1.1', '1.64', '0.36', '-17.09', '2.14', '26.36', '0.45', '0.0000']
原因分析
经过对NuScenes-devkit源码的审查,发现这种差异是设计上的考虑而非错误。标准的KITTI格式确实只需要15个元素,但NuScenes-devkit在转换时额外添加了一个分类置信度分数作为第16个元素。
这个设计决策源于NuScenes数据集本身的特点。NuScenes数据集中的每个检测框都带有检测置信度分数,而原始KITTI格式没有这个字段。为了保留这一重要信息,转换脚本将其添加在行末。
技术细节
在转换过程中,脚本会处理以下关键信息:
- 对象类别(如car、pedestrian等)
- 截断程度(0-1之间的数值)
- 遮挡程度(0-3的整数)
- 观察角度(alpha值)
- 2D边界框坐标(left, top, right, bottom)
- 3D尺寸(height, width, length)
- 3D位置(x, y, z)
- 旋转角度(rotation_y)
- 检测置信度(额外添加的分数)
解决方案
开发者可以根据实际需求选择以下处理方式:
-
保留完整信息:直接使用16元素的格式,这不会影响大多数检测算法的运行,反而提供了更多信息。
-
裁剪为15元素:如果下游应用严格要求KITTI标准格式,可以简单地截取前15个元素。
-
自定义处理:修改export_kitti.py脚本,在输出前调整数据格式。
最佳实践建议
对于大多数应用场景,建议保留16元素的完整格式,因为:
- 检测置信度是评估检测质量的重要指标
- 大多数现代检测算法都能处理额外的字段
- 不会影响标准KITTI格式字段的读取
如果确实需要严格兼容KITTI格式,可以在数据加载阶段进行简单处理,而不是修改原始转换脚本,这样既保持了数据完整性,又满足了格式要求。
总结
NuScenes-devkit在转换为KITTI格式时添加置信度分数的行为是经过深思熟虑的设计选择,而非程序错误。开发者应当根据具体应用场景决定如何处理这个额外的字段。理解这一设计决策有助于更好地利用NuScenes数据集进行3D目标检测相关的研究和开发工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00