NuScenes数据集转KITTI格式时的数据维度问题解析
在使用NuScenes-devkit工具将NuScenes数据集转换为KITTI格式时,开发者可能会遇到输出数据维度不匹配的问题。本文深入分析这一现象的原因,并提供解决方案。
问题现象
当使用NuScenes-devkit中的export_kitti.py脚本转换数据时,输出的标注文件每行包含16个元素,而标准的KITTI格式通常只需要15个元素。具体表现为:
['barrier', '0.00', '4', '-10.00', '0.00', '519.72', '58.90', '575.55', '1.1', '1.64', '0.36', '-17.09', '2.14', '26.36', '0.45', '0.0000']
原因分析
经过对NuScenes-devkit源码的审查,发现这种差异是设计上的考虑而非错误。标准的KITTI格式确实只需要15个元素,但NuScenes-devkit在转换时额外添加了一个分类置信度分数作为第16个元素。
这个设计决策源于NuScenes数据集本身的特点。NuScenes数据集中的每个检测框都带有检测置信度分数,而原始KITTI格式没有这个字段。为了保留这一重要信息,转换脚本将其添加在行末。
技术细节
在转换过程中,脚本会处理以下关键信息:
- 对象类别(如car、pedestrian等)
- 截断程度(0-1之间的数值)
- 遮挡程度(0-3的整数)
- 观察角度(alpha值)
- 2D边界框坐标(left, top, right, bottom)
- 3D尺寸(height, width, length)
- 3D位置(x, y, z)
- 旋转角度(rotation_y)
- 检测置信度(额外添加的分数)
解决方案
开发者可以根据实际需求选择以下处理方式:
-
保留完整信息:直接使用16元素的格式,这不会影响大多数检测算法的运行,反而提供了更多信息。
-
裁剪为15元素:如果下游应用严格要求KITTI标准格式,可以简单地截取前15个元素。
-
自定义处理:修改export_kitti.py脚本,在输出前调整数据格式。
最佳实践建议
对于大多数应用场景,建议保留16元素的完整格式,因为:
- 检测置信度是评估检测质量的重要指标
- 大多数现代检测算法都能处理额外的字段
- 不会影响标准KITTI格式字段的读取
如果确实需要严格兼容KITTI格式,可以在数据加载阶段进行简单处理,而不是修改原始转换脚本,这样既保持了数据完整性,又满足了格式要求。
总结
NuScenes-devkit在转换为KITTI格式时添加置信度分数的行为是经过深思熟虑的设计选择,而非程序错误。开发者应当根据具体应用场景决定如何处理这个额外的字段。理解这一设计决策有助于更好地利用NuScenes数据集进行3D目标检测相关的研究和开发工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00