PaddleClas中PP-ShiTuV2模型导出与Serving部署问题解析
2025-06-06 15:36:49作者:霍妲思
问题背景
在使用PaddleClas项目中的PP-ShiTuV2模型时,用户可能会遇到一个常见问题:当使用自定义训练后导出的模型进行Paddle Serving部署时,发现缺少必要的配置文件,特别是infer_cfg.yml文件,导致无法正确配置class_id_map_file参数。
问题分析
PP-ShiTuV2是PaddleClas中的一个通用识别模型,主要用于图像识别任务。在模型训练完成后,需要将模型导出为推理格式才能用于生产环境部署。标准导出流程默认可能不会生成所有必要的配置文件,特别是当用户计划使用Paddle Inference或Paddle Fast Deploy时。
解决方案
要解决这个问题,关键在于模型导出阶段需要添加特定参数。以下是详细的解决方案:
-
添加导出参数:在导出模型时,需要添加
-o Global.export_for_fd=True参数,这会确保生成完整的配置文件,包括infer_cfg.yml。 -
完整导出命令示例:
python tools/export_model.py \
-c ./ppcls/configs/GeneralRecognitionV2/GeneralRecognitionV2_PPLCNetV2_base.yaml \
-o Global.pretrained_model="your_model_path" \
-o Global.save_inference_dir=deploy/models/your_export_dir \
-o Global.export_for_fd=True
- 使用PaddleX替代方案:如果上述方法仍然存在问题,可以考虑使用PaddleX进行模型训练和导出,PaddleX的导出流程通常会生成更完整的配置文件。
技术细节
export_for_fd参数的作用是告诉导出脚本需要为FastDeploy准备完整的配置文件。这个参数会触发以下操作:
- 生成
infer_cfg.yml配置文件 - 包含类别ID映射信息
- 准备模型服务化所需的所有元数据
最佳实践建议
- 在模型训练完成后,建议立即进行导出测试,确保所有必要文件都已生成。
- 对于生产环境部署,建议使用PaddleX进行端到端的模型开发和部署流程。
- 在导出模型前,仔细检查配置文件中的路径和参数设置,确保与后续部署环境匹配。
通过以上方法,用户可以顺利解决PP-ShiTuV2模型导出后缺少配置文件的问题,确保模型能够正确部署到Paddle Serving环境中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134