探索数据科学薪资估算器:一份强大的开源工具
2024-05-22 20:26:02作者:胡易黎Nicole
项目简介
在数据科学领域找工作时,了解预期薪资是至关重要的谈判策略。这就是Data Science Salary Estimator的由来——一个能帮助你预测数据科学家薪资(平均绝对误差约$11K)的强大工具。它通过爬取Glassdoor上的1000多个职位描述,利用自然语言处理技术提取关键信息,并结合机器学习模型进行薪资估算。
项目技术分析
该项目采用Python 3.7作为基础开发环境,充分利用了以下库:
pandas和numpy进行数据处理与计算。sklearn中的Linear,Lasso, 和RandomForest回归器用于建立预测模型,以及GridsearchCV优化模型参数。matplotlib和seaborn制作可视化图表,揭示数据背后的模式与趋势。selenium进行网页动态抓取。flask构建面向用户的API接口,实现模型服务化。json和pickle用于数据交换与模型存储。
此外,还参考了两个GitHub仓库来实现爬虫和Flask应用的部署。
应用场景
- 求职者准备面试:在申请工作前,你可以输入目标岗位的关键信息,获取薪资预估,为薪酬谈判提供依据。
- 雇主制定招聘预算:企业可根据地区、行业和所需技能预测新员工薪资,合理规划人力资源成本。
- 研究数据分析:数据科学家可以研究不同技能、地理位置等因素如何影响数据科学薪资,从而发现行业趋势。
项目特点
- 精准预测:通过训练随机森林回归模型,项目实现了对数据科学薪资的精确预测,平均误差仅$11K。
- 全面抓取:使用
selenium深入爬取Glassdoor网站,获取大量真实的职位信息,包括薪资、评价、公司详情等。 - 特征工程:从职位描述中挖掘出如Python、Excel、AWS、Spark等技能的价值,作为预测模型的重要输入。
- 友好的API接口:部署了基于Flask的API,用户只需发送请求就能获取估算结果,易于集成到其他应用程序中。
- 详实的数据探索:通过EDA(Exploratory Data Analysis),展示了不同岗位和地区之间的薪资差异及关联性。
结语
Data Science Salary Estimator是一个强大且实用的开源工具,它将复杂的爬虫、机器学习和API设计整合在一起,为数据科学社区提供了宝贵的资源。如果你正处在寻找数据科学工作的旅程中,或希望深入了解薪资预测的奥秘,这个项目无疑是你的理想选择。现在就加入,体验它带来的便捷与洞察力吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111