MeterSphere定时任务清理报告的性能优化实践
2025-05-19 09:24:11作者:戚魁泉Nursing
背景介绍
MeterSphere作为一款开源的一站式测试平台,在日常使用中会积累大量的测试报告数据。随着系统运行时间的增长,这些报告数据会占用大量存储空间,因此平台提供了定时清理功能来维护系统性能。然而,在实际使用中发现,当清理大量场景报告时,系统会出现明显的性能问题。
问题分析
在MeterSphere v2.10.23版本中,定时清理功能存在以下两个主要性能问题:
-
批量删除处理单元过大:当前代码中设置的handleCount为2000,这个值对于场景报告来说过大。因为每个报告(report)下可能关联多个测试场景,而每个场景中又包含多个步骤,导致实际删除的数据量会呈倍数增长(2000×n),造成删除操作耗时过长。
-
删除逻辑实现不够高效:当前的批量删除实现方式可以通过更简洁的分片处理来优化。使用Apache Commons Collections库中的ListUtils.partition方法可以更优雅地实现列表分片处理。
技术解决方案
批量删除优化方案
针对第一个问题,建议优化ApiScenarioReportService中的deleteAPIReportBatch方法:
- 适当减小handleCount的值,根据实际测试数据评估,建议调整为500或更小值
- 采用更智能的分批处理策略,考虑报告关联数据的复杂度动态调整批次大小
代码重构方案
针对第二个问题,可以重构batchDeleteReportResource方法,使用ListUtils.partition实现更简洁的分批处理:
public void batchDeleteReportResource(List<String> ids) {
if (CollectionUtils.isEmpty(ids)) {
return;
}
ListUtils.partition(ids, BATCH_SIZE).forEach(batch -> {
apiScenarioReportResultMapper.deleteByReportIds(batch);
extApiScenarioReportMapper.deleteByIds(batch);
});
}
异步处理机制
由于删除操作耗时过长会导致以下问题:
- Kafka消费者因两次消息间隔时间过长被踢出消费组
- 触发消费者重新加入和rebalance过程
- 可能导致消息丢失
建议将删除操作改为异步执行,示例代码结构:
@Async
public void asyncDeleteReports(List<String> ids) {
// 执行实际的删除逻辑
batchDeleteReportResource(ids);
}
实施建议
- 性能测试:在实施优化前,应对不同批次大小进行性能测试,找到最优的handleCount值
- 监控机制:添加删除操作的执行时间监控,便于后续持续优化
- 事务管理:异步删除时需注意事务边界,确保数据一致性
- 错误处理:完善异步任务的错误处理和重试机制
预期效果
通过上述优化措施,预期可以获得以下改进:
- 显著减少单次删除操作的执行时间
- 降低对Kafka消费者组稳定性的影响
- 提高系统整体响应速度
- 减少因长时间操作导致的资源锁定
总结
定时任务清理功能是测试平台维护的重要组成部分,其性能直接影响系统稳定性。通过对MeterSphere报告清理机制的优化,不仅可以解决当前版本中的性能问题,也为后续处理大规模数据积累提供了可扩展的解决方案。在实际实施中,建议根据具体业务场景和数据规模进行参数调优,以达到最佳性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8