MeterSphere定时任务清理报告的性能优化实践
2025-05-19 06:42:56作者:戚魁泉Nursing
背景介绍
MeterSphere作为一款开源的一站式测试平台,在日常使用中会积累大量的测试报告数据。随着系统运行时间的增长,这些报告数据会占用大量存储空间,因此平台提供了定时清理功能来维护系统性能。然而,在实际使用中发现,当清理大量场景报告时,系统会出现明显的性能问题。
问题分析
在MeterSphere v2.10.23版本中,定时清理功能存在以下两个主要性能问题:
-
批量删除处理单元过大:当前代码中设置的handleCount为2000,这个值对于场景报告来说过大。因为每个报告(report)下可能关联多个测试场景,而每个场景中又包含多个步骤,导致实际删除的数据量会呈倍数增长(2000×n),造成删除操作耗时过长。
-
删除逻辑实现不够高效:当前的批量删除实现方式可以通过更简洁的分片处理来优化。使用Apache Commons Collections库中的ListUtils.partition方法可以更优雅地实现列表分片处理。
技术解决方案
批量删除优化方案
针对第一个问题,建议优化ApiScenarioReportService中的deleteAPIReportBatch方法:
- 适当减小handleCount的值,根据实际测试数据评估,建议调整为500或更小值
- 采用更智能的分批处理策略,考虑报告关联数据的复杂度动态调整批次大小
代码重构方案
针对第二个问题,可以重构batchDeleteReportResource方法,使用ListUtils.partition实现更简洁的分批处理:
public void batchDeleteReportResource(List<String> ids) {
if (CollectionUtils.isEmpty(ids)) {
return;
}
ListUtils.partition(ids, BATCH_SIZE).forEach(batch -> {
apiScenarioReportResultMapper.deleteByReportIds(batch);
extApiScenarioReportMapper.deleteByIds(batch);
});
}
异步处理机制
由于删除操作耗时过长会导致以下问题:
- Kafka消费者因两次消息间隔时间过长被踢出消费组
- 触发消费者重新加入和rebalance过程
- 可能导致消息丢失
建议将删除操作改为异步执行,示例代码结构:
@Async
public void asyncDeleteReports(List<String> ids) {
// 执行实际的删除逻辑
batchDeleteReportResource(ids);
}
实施建议
- 性能测试:在实施优化前,应对不同批次大小进行性能测试,找到最优的handleCount值
- 监控机制:添加删除操作的执行时间监控,便于后续持续优化
- 事务管理:异步删除时需注意事务边界,确保数据一致性
- 错误处理:完善异步任务的错误处理和重试机制
预期效果
通过上述优化措施,预期可以获得以下改进:
- 显著减少单次删除操作的执行时间
- 降低对Kafka消费者组稳定性的影响
- 提高系统整体响应速度
- 减少因长时间操作导致的资源锁定
总结
定时任务清理功能是测试平台维护的重要组成部分,其性能直接影响系统稳定性。通过对MeterSphere报告清理机制的优化,不仅可以解决当前版本中的性能问题,也为后续处理大规模数据积累提供了可扩展的解决方案。在实际实施中,建议根据具体业务场景和数据规模进行参数调优,以达到最佳性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137