MeterSphere定时任务清理报告的性能优化实践
2025-05-19 10:31:01作者:戚魁泉Nursing
背景介绍
MeterSphere作为一款开源的一站式测试平台,在日常使用中会积累大量的测试报告数据。随着系统运行时间的增长,这些报告数据会占用大量存储空间,因此平台提供了定时清理功能来维护系统性能。然而,在实际使用中发现,当清理大量场景报告时,系统会出现明显的性能问题。
问题分析
在MeterSphere v2.10.23版本中,定时清理功能存在以下两个主要性能问题:
-
批量删除处理单元过大:当前代码中设置的handleCount为2000,这个值对于场景报告来说过大。因为每个报告(report)下可能关联多个测试场景,而每个场景中又包含多个步骤,导致实际删除的数据量会呈倍数增长(2000×n),造成删除操作耗时过长。
-
删除逻辑实现不够高效:当前的批量删除实现方式可以通过更简洁的分片处理来优化。使用Apache Commons Collections库中的ListUtils.partition方法可以更优雅地实现列表分片处理。
技术解决方案
批量删除优化方案
针对第一个问题,建议优化ApiScenarioReportService中的deleteAPIReportBatch方法:
- 适当减小handleCount的值,根据实际测试数据评估,建议调整为500或更小值
- 采用更智能的分批处理策略,考虑报告关联数据的复杂度动态调整批次大小
代码重构方案
针对第二个问题,可以重构batchDeleteReportResource方法,使用ListUtils.partition实现更简洁的分批处理:
public void batchDeleteReportResource(List<String> ids) {
if (CollectionUtils.isEmpty(ids)) {
return;
}
ListUtils.partition(ids, BATCH_SIZE).forEach(batch -> {
apiScenarioReportResultMapper.deleteByReportIds(batch);
extApiScenarioReportMapper.deleteByIds(batch);
});
}
异步处理机制
由于删除操作耗时过长会导致以下问题:
- Kafka消费者因两次消息间隔时间过长被踢出消费组
- 触发消费者重新加入和rebalance过程
- 可能导致消息丢失
建议将删除操作改为异步执行,示例代码结构:
@Async
public void asyncDeleteReports(List<String> ids) {
// 执行实际的删除逻辑
batchDeleteReportResource(ids);
}
实施建议
- 性能测试:在实施优化前,应对不同批次大小进行性能测试,找到最优的handleCount值
- 监控机制:添加删除操作的执行时间监控,便于后续持续优化
- 事务管理:异步删除时需注意事务边界,确保数据一致性
- 错误处理:完善异步任务的错误处理和重试机制
预期效果
通过上述优化措施,预期可以获得以下改进:
- 显著减少单次删除操作的执行时间
- 降低对Kafka消费者组稳定性的影响
- 提高系统整体响应速度
- 减少因长时间操作导致的资源锁定
总结
定时任务清理功能是测试平台维护的重要组成部分,其性能直接影响系统稳定性。通过对MeterSphere报告清理机制的优化,不仅可以解决当前版本中的性能问题,也为后续处理大规模数据积累提供了可扩展的解决方案。在实际实施中,建议根据具体业务场景和数据规模进行参数调优,以达到最佳性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
177
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
864
512

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K