在gptel项目中配置不同主模式下的模型后端
2025-07-02 00:48:11作者:钟日瑜
gptel是一个Emacs插件,提供了与多种AI模型交互的功能。在实际使用中,开发者经常需要根据不同编辑模式切换不同的AI模型。本文将介绍如何正确配置gptel以实现在不同主模式下使用不同模型后端的技术方案。
问题背景
当用户尝试在不同主模式下配置不同的模型时,可能会遇到模型与后端不匹配的警告信息。例如,在文本模式下使用Gemini模型,在编程模式下使用GPT-4模型,但在打开专用gptel缓冲区时却收到"模型不支持"的警告。
解决方案
通过分析gptel的源代码,我们发现问题的根源在于gptel在检查模型兼容性时,错误地比较了默认后端值和缓冲区局部模型值。最新版本已经修复了这个问题,现在可以正确识别缓冲区局部设置。
配置示例
以下是一个完整的配置示例,展示了如何在不同主模式下设置不同的模型:
;; 设置API密钥
(setq gptel-api-key (auth-source-pass-get "key" "your-api-key-path"))
;; 创建Gemini后端
(gptel-make-gemini "Gemini"
:stream t
:key (auth-source-pass-get 'secret "your-gemini-key-path"))
;; 定义模型配置函数
(defun gptel-extras-model-config (globally &optional backend-name model-name)
"配置gptel后端和模型"
(interactive "P")
(let* ((backend-name (or backend-name
(if (<= (length gptel--known-backends) 1)
(caar gptel--known-backends)
(completing-read "Backend name: " (mapcar #'car gptel--known-backends) nil t))))
(backend (alist-get backend-name gptel--known-backends nil nil #'equal))
(backend-models (gptel-backend-models backend))
(model-name (or model-name
(if (= (length backend-models) 1)
(car backend-models)
(completing-read "Model name: " backend-models))))
(setter (if globally #'set-default #'set)))
(funcall setter 'gptel-model model-name)
(funcall setter 'gptel-backend backend)))
;; 为不同模式设置不同模型
(dolist (hook '(text-mode-hook bibtex-mode-hook))
(add-hook hook (lambda ()
(gptel-extras-model-config nil "Gemini" "gemini-pro")))
(add-hook 'prog-mode-hook (lambda ()
(gptel-extras-model-config nil "ChatGPT" "gpt-4")))
技术要点
-
后端创建:使用
gptel-make-gemini
等函数创建不同的后端实例。 -
模型配置:通过自定义函数
gptel-extras-model-config
可以灵活地为不同缓冲区或全局设置模型和后端。 -
模式挂钩:利用Emacs的hook机制,在不同主模式下自动切换模型配置。
-
作用域控制:通过
setter
变量控制配置是应用在当前缓冲区还是全局。
注意事项
-
确保使用的模型名称与后端支持的模型列表匹配。
-
不同后端可能需要不同的认证方式,注意正确设置API密钥。
-
最新版本的gptel已经修复了默认值与局部值比较的问题,建议保持插件更新。
通过这种配置方式,开发者可以在不同编辑环境下无缝切换AI模型,提高工作效率。这种灵活的配置方案特别适合需要同时使用多种AI模型进行不同任务的开发者。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8