在gptel项目中配置不同主模式下的模型后端
2025-07-02 08:28:23作者:钟日瑜
gptel是一个Emacs插件,提供了与多种AI模型交互的功能。在实际使用中,开发者经常需要根据不同编辑模式切换不同的AI模型。本文将介绍如何正确配置gptel以实现在不同主模式下使用不同模型后端的技术方案。
问题背景
当用户尝试在不同主模式下配置不同的模型时,可能会遇到模型与后端不匹配的警告信息。例如,在文本模式下使用Gemini模型,在编程模式下使用GPT-4模型,但在打开专用gptel缓冲区时却收到"模型不支持"的警告。
解决方案
通过分析gptel的源代码,我们发现问题的根源在于gptel在检查模型兼容性时,错误地比较了默认后端值和缓冲区局部模型值。最新版本已经修复了这个问题,现在可以正确识别缓冲区局部设置。
配置示例
以下是一个完整的配置示例,展示了如何在不同主模式下设置不同的模型:
;; 设置API密钥
(setq gptel-api-key (auth-source-pass-get "key" "your-api-key-path"))
;; 创建Gemini后端
(gptel-make-gemini "Gemini"
:stream t
:key (auth-source-pass-get 'secret "your-gemini-key-path"))
;; 定义模型配置函数
(defun gptel-extras-model-config (globally &optional backend-name model-name)
"配置gptel后端和模型"
(interactive "P")
(let* ((backend-name (or backend-name
(if (<= (length gptel--known-backends) 1)
(caar gptel--known-backends)
(completing-read "Backend name: " (mapcar #'car gptel--known-backends) nil t))))
(backend (alist-get backend-name gptel--known-backends nil nil #'equal))
(backend-models (gptel-backend-models backend))
(model-name (or model-name
(if (= (length backend-models) 1)
(car backend-models)
(completing-read "Model name: " backend-models))))
(setter (if globally #'set-default #'set)))
(funcall setter 'gptel-model model-name)
(funcall setter 'gptel-backend backend)))
;; 为不同模式设置不同模型
(dolist (hook '(text-mode-hook bibtex-mode-hook))
(add-hook hook (lambda ()
(gptel-extras-model-config nil "Gemini" "gemini-pro")))
(add-hook 'prog-mode-hook (lambda ()
(gptel-extras-model-config nil "ChatGPT" "gpt-4")))
技术要点
-
后端创建:使用
gptel-make-gemini等函数创建不同的后端实例。 -
模型配置:通过自定义函数
gptel-extras-model-config可以灵活地为不同缓冲区或全局设置模型和后端。 -
模式挂钩:利用Emacs的hook机制,在不同主模式下自动切换模型配置。
-
作用域控制:通过
setter变量控制配置是应用在当前缓冲区还是全局。
注意事项
-
确保使用的模型名称与后端支持的模型列表匹配。
-
不同后端可能需要不同的认证方式,注意正确设置API密钥。
-
最新版本的gptel已经修复了默认值与局部值比较的问题,建议保持插件更新。
通过这种配置方式,开发者可以在不同编辑环境下无缝切换AI模型,提高工作效率。这种灵活的配置方案特别适合需要同时使用多种AI模型进行不同任务的开发者。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1