SimpleVLA-RL 的项目扩展与二次开发
2025-06-02 11:45:47作者:齐添朝
1. 项目的基础介绍
SimpleVLA-RL 是一个基于深度强化学习(Deep Reinforcement Learning, DRL)的开源项目,它提出了一种简单有效的在线学习策略,用于训练视觉语言行动(Vision-Language-Action, VLA)模型。该项目通过使用仅包含0/1简单结果级别的奖励信号,实现了在单个轨迹上的监督微调(Supervised Fine-Tuning, SFT),显著降低了模型对大量训练数据的依赖。
2. 项目的核心功能
项目的核心功能是利用简单的0/1奖励信号进行在线强化学习,从而提高VLA模型在LIBERO等基准测试中的性能。通过仅使用单个轨迹的SFT,SimpleVLA-RL 能够将OpenVLA-OFT模型的性能从17.3提升至91.7,增加了74.4点的改进(430.1%)。
3. 项目使用了哪些框架或库?
SimpleVLA-RL 项目主要使用了以下框架或库:
- veRL:一个用于VLA模型研究的开源环境。
- OpenVLA-OFT:一个基于视觉语言的行动模型。
- PyTorch:一个用于深度学习的开源库。
- WandB(Weights & Biases):一个用于实验跟踪和管理的工具。
4. 项目的代码目录及介绍
项目的代码目录结构如下:
- examples/:包含运行实验的脚本。
- figs/:存储项目相关的图表和图像。
- .gitignore:指定Git应该忽略的文件和目录。
- LICENSE:项目的MIT许可证文件。
- README.md:项目的说明文件。
- align.json:配置文件,包含WandB API密钥等。
- verl/:可能与veRL环境相关的目录。
- 其他文件:如README文件中提到的其他配置和脚本文件。
5. 对项目进行扩展或者二次开发的方向
- 增加新的基准测试:目前项目支持LIBERO基准测试,可以扩展到其他类似的VLA任务,如RoboTwin等。
- 集成更多的模型:除了OpenVLA和OpenVLA-OFT,项目可以支持更多的VLA模型,以提供更广泛的适用性。
- 改进奖励信号:研究并集成更复杂的奖励信号机制,以提高模型的学习效率和性能。
- 优化训练流程:通过自动化和优化训练脚本,简化模型的训练和部署过程。
- 添加用户交互界面:开发图形用户界面(GUI),方便用户直观地操作和监控模型训练过程。
- 开源社区合作:鼓励更多的研究者和技术爱好者参与到项目的开发和维护中来,共同推动VLA领域的技术进步。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
421
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869