从BAM文件完整提取原始测序数据的技巧与注意事项
2025-07-09 13:56:27作者:秋泉律Samson
在基因组数据分析过程中,我们经常需要将比对后的BAM文件重新转换为FASTQ格式进行重新比对或其他分析。本文将以samtools工具为例,介绍如何正确处理BAM到FASTQ的转换,特别是针对不同比对状态(read状态)的reads处理。
常见转换方法比较
目前主要有以下几种方法可以将BAM转换为FASTQ格式:
- samtools fastq基本用法:
samtools fastq -1 r1.fq -2 r2.fq input.bam
- bedtools bamtofastq:
bedtools bamtofastq -i input.bam -fq r1.fq -fq2 r2.fq
- Picard SamToFastq:
picard SamToFastq I=input.bam F=r1.fq F2=r2.fq FU=unmapped.fq
- 按read方向分别提取:
samtools view -hbf 64 input.bam | samtools fastq > r1.fq
samtools view -hbf 128 input.bam | samtools fastq > r2.fq
关键问题与解决方案
1. 未比对reads的丢失问题
许多比对工具(如STAR)默认不会在输出BAM中包含未比对的reads,除非特别指定参数outSAMunmapped。这会导致使用上述方法1和2时丢失这些reads。
解决方案:
- 使用
samtools fastq的-s参数单独输出单端reads:
samtools fastq -1 r1.fq -2 r2.fq -s singleton.fq input.bam
2. 比对状态标记的影响
BAM文件中的每条read都有多种状态标记:
- 未比对(-f 4)
- 第一端read(-f 64)
- 第二端read(-f 128)
- 辅助比对(-f 2048)
- 次要比对(-f 256)
建议做法:
- 首先确认BAM文件是按read name排序的
- 使用
samtools flagstat检查各类reads的数量 - 根据需要选择适当的提取方法
最佳实践建议
- 数据完整性检查:
- 比对前记录原始FASTQ的reads数量
- 比对后使用
samtools flagstat统计各类reads - 转换后检查FASTQ文件的行数是否匹配
- 转换参数选择:
- 对于完整提取,推荐:
samtools fastq -1 r1.fq -2 r2.fq -s singleton.fq input.bam
- 或者分别提取R1和R2:
samtools view -hbf 64 input.bam | samtools fastq > r1.fq
samtools view -hbf 128 input.bam | samtools fastq > r2.fq
- 流程设计建议:
- 在比对流程中保留原始FASTQ文件
- 如需从BAM反向提取,确保比对时包含未比对reads
- 考虑使用流程管理系统记录数据转换过程
总结
正确处理BAM到FASTQ的转换需要考虑多种因素,包括比对工具的参数设置、reads的不同状态标记以及转换工具的特性。理解这些细节可以帮助研究人员避免数据丢失,确保分析结果的可靠性。对于从公共数据库获取的BAM文件,建议优先检查数据完整性,并根据需要选择合适的转换方法。
记住,最可靠的方法始终是从原始FASTQ文件开始分析,BAM到FASTQ的转换应视为最后手段而非常规做法。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882