从BAM文件完整提取原始测序数据的技巧与注意事项
2025-07-09 20:23:41作者:秋泉律Samson
在基因组数据分析过程中,我们经常需要将比对后的BAM文件重新转换为FASTQ格式进行重新比对或其他分析。本文将以samtools工具为例,介绍如何正确处理BAM到FASTQ的转换,特别是针对不同比对状态(read状态)的reads处理。
常见转换方法比较
目前主要有以下几种方法可以将BAM转换为FASTQ格式:
- samtools fastq基本用法:
samtools fastq -1 r1.fq -2 r2.fq input.bam
- bedtools bamtofastq:
bedtools bamtofastq -i input.bam -fq r1.fq -fq2 r2.fq
- Picard SamToFastq:
picard SamToFastq I=input.bam F=r1.fq F2=r2.fq FU=unmapped.fq
- 按read方向分别提取:
samtools view -hbf 64 input.bam | samtools fastq > r1.fq
samtools view -hbf 128 input.bam | samtools fastq > r2.fq
关键问题与解决方案
1. 未比对reads的丢失问题
许多比对工具(如STAR)默认不会在输出BAM中包含未比对的reads,除非特别指定参数outSAMunmapped。这会导致使用上述方法1和2时丢失这些reads。
解决方案:
- 使用
samtools fastq的-s参数单独输出单端reads:
samtools fastq -1 r1.fq -2 r2.fq -s singleton.fq input.bam
2. 比对状态标记的影响
BAM文件中的每条read都有多种状态标记:
- 未比对(-f 4)
- 第一端read(-f 64)
- 第二端read(-f 128)
- 辅助比对(-f 2048)
- 次要比对(-f 256)
建议做法:
- 首先确认BAM文件是按read name排序的
- 使用
samtools flagstat检查各类reads的数量 - 根据需要选择适当的提取方法
最佳实践建议
- 数据完整性检查:
- 比对前记录原始FASTQ的reads数量
- 比对后使用
samtools flagstat统计各类reads - 转换后检查FASTQ文件的行数是否匹配
- 转换参数选择:
- 对于完整提取,推荐:
samtools fastq -1 r1.fq -2 r2.fq -s singleton.fq input.bam
- 或者分别提取R1和R2:
samtools view -hbf 64 input.bam | samtools fastq > r1.fq
samtools view -hbf 128 input.bam | samtools fastq > r2.fq
- 流程设计建议:
- 在比对流程中保留原始FASTQ文件
- 如需从BAM反向提取,确保比对时包含未比对reads
- 考虑使用流程管理系统记录数据转换过程
总结
正确处理BAM到FASTQ的转换需要考虑多种因素,包括比对工具的参数设置、reads的不同状态标记以及转换工具的特性。理解这些细节可以帮助研究人员避免数据丢失,确保分析结果的可靠性。对于从公共数据库获取的BAM文件,建议优先检查数据完整性,并根据需要选择合适的转换方法。
记住,最可靠的方法始终是从原始FASTQ文件开始分析,BAM到FASTQ的转换应视为最后手段而非常规做法。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
146
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19