GLM-4 模型微调中的显存优化策略与实践
问题背景
在GLM-4大语言模型的微调过程中,许多开发者遇到了显存不足的问题,特别是在使用3090等消费级显卡时。即使配备了多张显卡,系统仍然可能报出显存不足的错误。本文将深入分析这一问题的根源,并提供切实可行的解决方案。
显存不足的原因分析
-
模型规模与显存需求:GLM-4-9B模型参数规模庞大,全精度加载需要约36GB显存,即使使用LoRA等参数高效微调方法,基础模型的加载仍然需要大量显存。
-
多卡并行机制:当使用DataParallel时,系统会自动将模型复制到所有可用GPU上,导致每张卡都需要完整加载模型,而不是分布式地分担显存压力。
-
序列长度影响:较长的输入输出序列会显著增加显存消耗,特别是在自注意力机制中,显存需求与序列长度呈平方关系增长。
解决方案与实践
1. 环境配置优化
-
降低Transformers版本:建议使用transformers 4.40.2版本,较新的版本可能存在兼容性问题或更高的显存需求。
-
调整序列长度:在配置文件中将max_token参数从默认的1024降低到512或更低,可以显著减少显存消耗。
2. 单卡微调优化策略
-
启用梯度检查点:通过激活梯度检查点技术,可以以计算时间为代价换取显存节省。
-
调整批处理大小:将per_device_train_batch_size设置为1,并适当增加gradient_accumulation_steps来维持等效批大小。
-
混合精度训练:使用fp16或bf16混合精度训练,可以大幅减少显存占用。
3. 多卡训练的正确姿势
对于拥有多张显卡的用户,建议采用以下方法:
-
使用Deepspeed Zero3:这是目前最有效的多卡训练方案,可以智能地将模型参数、梯度和优化器状态分配到不同GPU上。
-
配置示例:
deepspeed:
zero_optimization:
stage: 3
offload_optimizer:
device: cpu
offload_param:
device: cpu
4. 模型结构调整
-
参数高效微调:优先使用LoRA或Adapter等微调方法,只训练少量参数。
-
部分冻结:对于视觉模型,可以冻结ViT等基础特征提取器,仅微调顶层结构。
实践建议
-
监控工具使用:在训练前使用nvidia-smi -l 1监控显存使用情况,了解各环节的显存需求。
-
渐进式测试:先从很小的batch size和短序列开始测试,逐步增加直到找到显存上限。
-
显存清理:在代码中适当位置添加torch.cuda.empty_cache(),及时释放不再使用的显存。
总结
GLM-4这类大模型的微调确实对硬件提出了较高要求,但通过合理的配置和优化策略,即使在消费级显卡上也能实现有效微调。关键在于理解各种优化技术的原理,并根据自身硬件条件进行适当配置。对于3090这样的显卡,建议优先考虑Deepspeed Zero3方案,配合LoRA等参数高效方法,可以在有限显存条件下完成模型微调。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









