GLM-4 模型微调中的显存优化策略与实践
问题背景
在GLM-4大语言模型的微调过程中,许多开发者遇到了显存不足的问题,特别是在使用3090等消费级显卡时。即使配备了多张显卡,系统仍然可能报出显存不足的错误。本文将深入分析这一问题的根源,并提供切实可行的解决方案。
显存不足的原因分析
-
模型规模与显存需求:GLM-4-9B模型参数规模庞大,全精度加载需要约36GB显存,即使使用LoRA等参数高效微调方法,基础模型的加载仍然需要大量显存。
-
多卡并行机制:当使用DataParallel时,系统会自动将模型复制到所有可用GPU上,导致每张卡都需要完整加载模型,而不是分布式地分担显存压力。
-
序列长度影响:较长的输入输出序列会显著增加显存消耗,特别是在自注意力机制中,显存需求与序列长度呈平方关系增长。
解决方案与实践
1. 环境配置优化
-
降低Transformers版本:建议使用transformers 4.40.2版本,较新的版本可能存在兼容性问题或更高的显存需求。
-
调整序列长度:在配置文件中将max_token参数从默认的1024降低到512或更低,可以显著减少显存消耗。
2. 单卡微调优化策略
-
启用梯度检查点:通过激活梯度检查点技术,可以以计算时间为代价换取显存节省。
-
调整批处理大小:将per_device_train_batch_size设置为1,并适当增加gradient_accumulation_steps来维持等效批大小。
-
混合精度训练:使用fp16或bf16混合精度训练,可以大幅减少显存占用。
3. 多卡训练的正确姿势
对于拥有多张显卡的用户,建议采用以下方法:
-
使用Deepspeed Zero3:这是目前最有效的多卡训练方案,可以智能地将模型参数、梯度和优化器状态分配到不同GPU上。
-
配置示例:
deepspeed:
zero_optimization:
stage: 3
offload_optimizer:
device: cpu
offload_param:
device: cpu
4. 模型结构调整
-
参数高效微调:优先使用LoRA或Adapter等微调方法,只训练少量参数。
-
部分冻结:对于视觉模型,可以冻结ViT等基础特征提取器,仅微调顶层结构。
实践建议
-
监控工具使用:在训练前使用nvidia-smi -l 1监控显存使用情况,了解各环节的显存需求。
-
渐进式测试:先从很小的batch size和短序列开始测试,逐步增加直到找到显存上限。
-
显存清理:在代码中适当位置添加torch.cuda.empty_cache(),及时释放不再使用的显存。
总结
GLM-4这类大模型的微调确实对硬件提出了较高要求,但通过合理的配置和优化策略,即使在消费级显卡上也能实现有效微调。关键在于理解各种优化技术的原理,并根据自身硬件条件进行适当配置。对于3090这样的显卡,建议优先考虑Deepspeed Zero3方案,配合LoRA等参数高效方法,可以在有限显存条件下完成模型微调。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00