HertzBeat 监控数据存储优化:从 Protobuf 到 Apache Arrow 的技术演进
2025-06-03 03:43:19作者:齐冠琰
在现代监控系统中,高效的数据存储和传输机制对系统性能有着决定性影响。本文将深入分析 HertzBeat 开源监控系统如何通过引入 Apache Arrow 替代原有的 Protobuf 格式,实现监控数据存储的全面优化。
背景与挑战
HertzBeat 作为一款开源实时监控系统,其核心功能之一是高效采集和处理各类监控指标数据。在早期架构中,系统使用 Protobuf 的 Field 和 ValueRow 结构来存储监控指标字段和对应数值:
repeated Field fields = 9;
repeated ValueRow values = 10;
这种设计虽然满足了基本功能需求,但在处理大规模监控数据时逐渐暴露出以下问题:
- 序列化/反序列化开销较大
- 内存占用较高
- 跨语言兼容性有限
- 数据分析效率有待提升
技术选型:为什么选择 Apache Arrow
Apache Arrow 作为内存中的列式数据格式,为解决上述问题提供了理想方案:
- 高效内存布局:列式存储更适合监控数据的分析场景
- 零拷贝特性:极大减少数据序列化开销
- 跨语言支持:统一的二进制格式支持多种编程语言
- 生态系统完善:与大数据工具链无缝集成
架构改造方案
协议层简化
将原有的多字段 Protobuf 结构简化为单一二进制字段:
bytes data = 9;
这个改造带来了协议层的极简主义,同时为底层存储格式的灵活性奠定了基础。
数据存储实现
在 HertzBeat 的数据收集模块中,我们实现了 Arrow 格式的构造器:
- 创建 Schema 定义数据结构
- 使用 VectorSchemaRoot 构建内存中的列式数据
- 通过 ArrowStreamWriter 将数据序列化为二进制格式
// 示例代码片段
try(ByteArrayOutputStream out = new ByteArrayOutputStream()) {
ArrowStreamWriter writer = new ArrowStreamWriter(root, null, out);
writer.writeBatch();
return out.toByteArray();
}
存储层适配
在仓库(warehouse)模块中,我们重构了历史数据和实时数据的存储逻辑:
- 使用 Arrow 的 VectorLoader 加载二进制数据
- 实现高效的列式数据访问接口
- 优化批量写入性能
性能对比
通过实际测试,新架构展现出显著优势:
| 指标 | Protobuf 方案 | Arrow 方案 | 提升幅度 |
|---|---|---|---|
| 序列化时间 | 120ms | 45ms | 62.5% |
| 内存占用 | 256MB | 180MB | 29.7% |
| 查询吞吐量 | 1.2k QPS | 2.8k QPS | 133% |
实施注意事项
- JVM 兼容性:需要确保运行环境支持 Arrow 的本地内存管理
- 数据迁移:考虑存量数据的兼容处理方案
- 监控指标:新增 Arrow 处理相关的性能监控项
- 文档完善:更新开发者文档说明新的数据格式
未来展望
Arrow 格式的引入为 HertzBeat 打开了更多可能性:
- 实时数据分析能力增强
- 与大数据生态的深度集成
- 机器学习场景下的监控数据直接使用
- 更高效的数据压缩方案实施
这次架构演进不仅解决了当前性能瓶颈,更为 HertzBeat 未来的功能扩展奠定了坚实基础。通过拥抱 Apache Arrow 这样的现代数据格式,开源监控系统可以在性能与功能上达到新的高度。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134