HertzBeat 监控数据存储优化:从 Protobuf 到 Apache Arrow 的技术演进
2025-06-03 05:09:20作者:齐冠琰
在现代监控系统中,高效的数据存储和传输机制对系统性能有着决定性影响。本文将深入分析 HertzBeat 开源监控系统如何通过引入 Apache Arrow 替代原有的 Protobuf 格式,实现监控数据存储的全面优化。
背景与挑战
HertzBeat 作为一款开源实时监控系统,其核心功能之一是高效采集和处理各类监控指标数据。在早期架构中,系统使用 Protobuf 的 Field 和 ValueRow 结构来存储监控指标字段和对应数值:
repeated Field fields = 9;
repeated ValueRow values = 10;
这种设计虽然满足了基本功能需求,但在处理大规模监控数据时逐渐暴露出以下问题:
- 序列化/反序列化开销较大
- 内存占用较高
- 跨语言兼容性有限
- 数据分析效率有待提升
技术选型:为什么选择 Apache Arrow
Apache Arrow 作为内存中的列式数据格式,为解决上述问题提供了理想方案:
- 高效内存布局:列式存储更适合监控数据的分析场景
- 零拷贝特性:极大减少数据序列化开销
- 跨语言支持:统一的二进制格式支持多种编程语言
- 生态系统完善:与大数据工具链无缝集成
架构改造方案
协议层简化
将原有的多字段 Protobuf 结构简化为单一二进制字段:
bytes data = 9;
这个改造带来了协议层的极简主义,同时为底层存储格式的灵活性奠定了基础。
数据存储实现
在 HertzBeat 的数据收集模块中,我们实现了 Arrow 格式的构造器:
- 创建 Schema 定义数据结构
- 使用 VectorSchemaRoot 构建内存中的列式数据
- 通过 ArrowStreamWriter 将数据序列化为二进制格式
// 示例代码片段
try(ByteArrayOutputStream out = new ByteArrayOutputStream()) {
ArrowStreamWriter writer = new ArrowStreamWriter(root, null, out);
writer.writeBatch();
return out.toByteArray();
}
存储层适配
在仓库(warehouse)模块中,我们重构了历史数据和实时数据的存储逻辑:
- 使用 Arrow 的 VectorLoader 加载二进制数据
- 实现高效的列式数据访问接口
- 优化批量写入性能
性能对比
通过实际测试,新架构展现出显著优势:
指标 | Protobuf 方案 | Arrow 方案 | 提升幅度 |
---|---|---|---|
序列化时间 | 120ms | 45ms | 62.5% |
内存占用 | 256MB | 180MB | 29.7% |
查询吞吐量 | 1.2k QPS | 2.8k QPS | 133% |
实施注意事项
- JVM 兼容性:需要确保运行环境支持 Arrow 的本地内存管理
- 数据迁移:考虑存量数据的兼容处理方案
- 监控指标:新增 Arrow 处理相关的性能监控项
- 文档完善:更新开发者文档说明新的数据格式
未来展望
Arrow 格式的引入为 HertzBeat 打开了更多可能性:
- 实时数据分析能力增强
- 与大数据生态的深度集成
- 机器学习场景下的监控数据直接使用
- 更高效的数据压缩方案实施
这次架构演进不仅解决了当前性能瓶颈,更为 HertzBeat 未来的功能扩展奠定了坚实基础。通过拥抱 Apache Arrow 这样的现代数据格式,开源监控系统可以在性能与功能上达到新的高度。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133