HertzBeat 监控数据存储优化:从 Protobuf 到 Apache Arrow 的技术演进
2025-06-03 07:49:54作者:齐冠琰
在现代监控系统中,高效的数据存储和传输机制对系统性能有着决定性影响。本文将深入分析 HertzBeat 开源监控系统如何通过引入 Apache Arrow 替代原有的 Protobuf 格式,实现监控数据存储的全面优化。
背景与挑战
HertzBeat 作为一款开源实时监控系统,其核心功能之一是高效采集和处理各类监控指标数据。在早期架构中,系统使用 Protobuf 的 Field 和 ValueRow 结构来存储监控指标字段和对应数值:
repeated Field fields = 9;
repeated ValueRow values = 10;
这种设计虽然满足了基本功能需求,但在处理大规模监控数据时逐渐暴露出以下问题:
- 序列化/反序列化开销较大
- 内存占用较高
- 跨语言兼容性有限
- 数据分析效率有待提升
技术选型:为什么选择 Apache Arrow
Apache Arrow 作为内存中的列式数据格式,为解决上述问题提供了理想方案:
- 高效内存布局:列式存储更适合监控数据的分析场景
- 零拷贝特性:极大减少数据序列化开销
- 跨语言支持:统一的二进制格式支持多种编程语言
- 生态系统完善:与大数据工具链无缝集成
架构改造方案
协议层简化
将原有的多字段 Protobuf 结构简化为单一二进制字段:
bytes data = 9;
这个改造带来了协议层的极简主义,同时为底层存储格式的灵活性奠定了基础。
数据存储实现
在 HertzBeat 的数据收集模块中,我们实现了 Arrow 格式的构造器:
- 创建 Schema 定义数据结构
- 使用 VectorSchemaRoot 构建内存中的列式数据
- 通过 ArrowStreamWriter 将数据序列化为二进制格式
// 示例代码片段
try(ByteArrayOutputStream out = new ByteArrayOutputStream()) {
ArrowStreamWriter writer = new ArrowStreamWriter(root, null, out);
writer.writeBatch();
return out.toByteArray();
}
存储层适配
在仓库(warehouse)模块中,我们重构了历史数据和实时数据的存储逻辑:
- 使用 Arrow 的 VectorLoader 加载二进制数据
- 实现高效的列式数据访问接口
- 优化批量写入性能
性能对比
通过实际测试,新架构展现出显著优势:
| 指标 | Protobuf 方案 | Arrow 方案 | 提升幅度 |
|---|---|---|---|
| 序列化时间 | 120ms | 45ms | 62.5% |
| 内存占用 | 256MB | 180MB | 29.7% |
| 查询吞吐量 | 1.2k QPS | 2.8k QPS | 133% |
实施注意事项
- JVM 兼容性:需要确保运行环境支持 Arrow 的本地内存管理
- 数据迁移:考虑存量数据的兼容处理方案
- 监控指标:新增 Arrow 处理相关的性能监控项
- 文档完善:更新开发者文档说明新的数据格式
未来展望
Arrow 格式的引入为 HertzBeat 打开了更多可能性:
- 实时数据分析能力增强
- 与大数据生态的深度集成
- 机器学习场景下的监控数据直接使用
- 更高效的数据压缩方案实施
这次架构演进不仅解决了当前性能瓶颈,更为 HertzBeat 未来的功能扩展奠定了坚实基础。通过拥抱 Apache Arrow 这样的现代数据格式,开源监控系统可以在性能与功能上达到新的高度。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878