AMPL 的安装和配置教程
2025-05-23 08:24:47作者:伍希望
1. 项目的基础介绍和主要的编程语言
AMPL(ATOM Modeling PipeLine)是一个开源的、端到端的软件管道,用于数据整理、模型构建和分子属性预测,旨在推动计算机辅助药物发现。它由Accelerating Therapeutics for Opportunities in Medicine (ATOM)联盟创建,并扩展了DeepChem的功能,支持多种机器学习和分子特征化工具,预测关键的活性、安全性和药动学相关参数。
AMPL的主要编程语言是Python,它使用Python 3.9版本。
2. 项目使用的关键技术和框架
AMPL项目使用以下关键技术和框架:
- DeepChem:一个用于药物发现的深度学习库。
- TensorFlow:一个用于机器学习的开源库。
- PyTorch:一个用于机器学习的Python库。
- DGL(Deep Graph Library):一个用于图表示学习的库。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装AMPL之前,请确保您的系统满足以下要求:
- Python 3.9环境
- 至少12GB的磁盘空间
- CUDA 11.8(如果使用GPU)
安装步骤
以下是AMPL的详细安装步骤:
-
创建Python虚拟环境
打开终端或命令提示符,创建一个Python 3.9的虚拟环境:
export ENVROOT=~/workspace cd $ENVROOT python3.9 -m venv atomsci-env
-
激活虚拟环境
激活刚刚创建的虚拟环境:
source $ENVROOT/atomsci-env/bin/activate
-
升级pip
升级pip到最新版本:
pip install pip --upgrade
-
克隆AMPL仓库
克隆AMPL项目的GitHub仓库:
git clone https://github.com/ATOMScience-org/AMPL.git
-
安装依赖
根据您的系统(CPU或CUDA),进入AMPL的pip目录并安装相应的依赖:
-
CPU-only安装:
cd AMPL/pip pip install -r cpu_requirements.txt
-
CUDA安装:
首先加载CUDA模块,然后运行CUDA特定的包安装:
module load cuda/11.8 pip install -r cuda_requirements.txt
如果遇到内存不足错误,可以尝试设置以下环境变量:
export LD_LIBRARY_PATH=<your_env>/lib:$LD_LIBRARY_PATH export PYTHONUSERBASE=<your_env> export OPENBLAS_NUM_THREADS=1 export OMP_NUM_THREADS=48 export PYTORCH_HIP_ALLOC_CONF=gargage_collection_threshold:0.9,max_split_size_mb:128 export TF_FORCE_GPU_ALLOW_GROWTH=true
-
-
安装开发依赖
安装pytest、绘图包等开发依赖:
cd AMPL/pip pip install -r dev_requirements.txt
-
构建AMPL
返回AMPL的父目录,运行以下命令来构建“atomsci”模块:
cd .. ./build.sh
然后安装AMPL:
pip install -e .
-
创建Jupyter笔记本内核(可选)
如果您想从Jupyter笔记本运行AMPL,可以创建一个新的内核:
python -m ipykernel install --user --name atomsci-env
通过上述步骤,您应该能够成功安装和配置AMPL。如果在安装过程中遇到任何问题,可以查看项目文档或向社区寻求帮助。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~092Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python010
- PparlantThe heavy-duty guidance framework for customer-facing LLM agentsPython06
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
184
266

openGauss kernel ~ openGauss is an open source relational database management system
C++
138
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
887
528

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
370
383

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
19
0

deepin linux kernel
C
22
6

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
337
1.11 K

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
61
2