AMPL 的安装和配置教程
2025-05-23 20:53:39作者:伍希望
1. 项目的基础介绍和主要的编程语言
AMPL(ATOM Modeling PipeLine)是一个开源的、端到端的软件管道,用于数据整理、模型构建和分子属性预测,旨在推动计算机辅助药物发现。它由Accelerating Therapeutics for Opportunities in Medicine (ATOM)联盟创建,并扩展了DeepChem的功能,支持多种机器学习和分子特征化工具,预测关键的活性、安全性和药动学相关参数。
AMPL的主要编程语言是Python,它使用Python 3.9版本。
2. 项目使用的关键技术和框架
AMPL项目使用以下关键技术和框架:
- DeepChem:一个用于药物发现的深度学习库。
- TensorFlow:一个用于机器学习的开源库。
- PyTorch:一个用于机器学习的Python库。
- DGL(Deep Graph Library):一个用于图表示学习的库。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装AMPL之前,请确保您的系统满足以下要求:
- Python 3.9环境
- 至少12GB的磁盘空间
- CUDA 11.8(如果使用GPU)
安装步骤
以下是AMPL的详细安装步骤:
-
创建Python虚拟环境
打开终端或命令提示符,创建一个Python 3.9的虚拟环境:
export ENVROOT=~/workspace cd $ENVROOT python3.9 -m venv atomsci-env -
激活虚拟环境
激活刚刚创建的虚拟环境:
source $ENVROOT/atomsci-env/bin/activate -
升级pip
升级pip到最新版本:
pip install pip --upgrade -
克隆AMPL仓库
克隆AMPL项目的GitHub仓库:
git clone https://github.com/ATOMScience-org/AMPL.git -
安装依赖
根据您的系统(CPU或CUDA),进入AMPL的pip目录并安装相应的依赖:
-
CPU-only安装:
cd AMPL/pip pip install -r cpu_requirements.txt -
CUDA安装:
首先加载CUDA模块,然后运行CUDA特定的包安装:
module load cuda/11.8 pip install -r cuda_requirements.txt
如果遇到内存不足错误,可以尝试设置以下环境变量:
export LD_LIBRARY_PATH=<your_env>/lib:$LD_LIBRARY_PATH export PYTHONUSERBASE=<your_env> export OPENBLAS_NUM_THREADS=1 export OMP_NUM_THREADS=48 export PYTORCH_HIP_ALLOC_CONF=gargage_collection_threshold:0.9,max_split_size_mb:128 export TF_FORCE_GPU_ALLOW_GROWTH=true -
-
安装开发依赖
安装pytest、绘图包等开发依赖:
cd AMPL/pip pip install -r dev_requirements.txt -
构建AMPL
返回AMPL的父目录,运行以下命令来构建“atomsci”模块:
cd .. ./build.sh然后安装AMPL:
pip install -e . -
创建Jupyter笔记本内核(可选)
如果您想从Jupyter笔记本运行AMPL,可以创建一个新的内核:
python -m ipykernel install --user --name atomsci-env
通过上述步骤,您应该能够成功安装和配置AMPL。如果在安装过程中遇到任何问题,可以查看项目文档或向社区寻求帮助。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882