在LMNR项目中实现Rust应用的精准分布式追踪
2025-07-06 17:53:31作者:乔或婵
背景介绍
在现代分布式系统中,分布式追踪是监控和诊断复杂系统行为的重要工具。LMNR作为一个AI项目,需要收集和分析应用程序的运行轨迹数据。本文将详细介绍如何在Rust应用中实现精准的分布式追踪,只收集业务相关的span数据,避免系统内部细节干扰。
核心问题分析
当使用Rust的tracing和OpenTelemetry库向LMNR后端发送追踪数据时,开发者遇到了一个常见问题:除了自定义的业务span(如gen_number()和multiply_number())外,系统还自动收集了大量底层框架的span(如FramedWrite::buffer等),这些数据不仅增加了存储负担,也干扰了业务分析。
解决方案
方案一:使用tracing-subscriber的过滤功能
tracing-subscriber提供了强大的过滤机制,可以通过自定义Layer来控制哪些span需要被记录和导出。
use tracing_subscriber::{filter::LevelFilter, Layer};
let filter = LevelFilter::INFO
.and(tracing_subscriber::filter::filter_fn(|metadata| {
// 只记录我们关心的span
metadata.target() == "rust-otlp-basic"
|| metadata.name() == "gen_number"
|| metadata.name() == "multiply_number"
}));
let telemetry = tracing_opentelemetry::layer()
.with_tracer(tracer)
.with_filter(filter);
方案二:OpenTelemetry SpanProcessor过滤
更底层的方案是实现自定义的SpanProcessor,在span创建时进行过滤:
use opentelemetry::sdk::trace::{Span, SpanProcessor};
struct CustomSpanProcessor;
impl SpanProcessor for CustomSpanProcessor {
fn on_start(&self, span: &mut Span) {
let name = span.name();
if !(name == "gen_number" || name == "multiply_number") {
span.set_attribute(KeyValue::new("otel.span.ignore", "true"));
}
}
}
// 在初始化tracer时配置
opentelemetry_otlp::new_pipeline()
.tracing()
.with_trace_config(
trace::config()
.with_span_processor(CustomSpanProcessor)
.with_resource(/*...*/)
)
// ...
最佳实践建议
- 明确span命名规范:为业务span建立统一的命名前缀,如
biz.,便于过滤 - 分层追踪:区分核心业务逻辑和辅助功能的追踪级别
- 属性标准化:LMNR特定的属性(如
lmnr.span.input)应统一前缀 - 性能考量:在高频操作中避免过度追踪
实施效果
经过上述优化后,LMNR后端将只接收到业务相关的span数据:
gen_numberspan及其属性multiply_numberspan及其属性- 清晰的错误追踪链
系统内部的框架级span将被有效过滤,使追踪数据更加清晰、分析更加高效。
总结
在Rust应用中实现精准的分布式追踪需要结合tracing和OpenTelemetry的能力。通过合理的过滤策略,开发者可以确保LMNR后端只收集有价值的业务数据,避免噪声干扰。这种方案不仅适用于当前示例,也可以推广到其他Rust项目的追踪实现中。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
239
2.36 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
Ascend Extension for PyTorch
Python
77
110
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
55