在LMNR项目中实现Rust应用的精准分布式追踪
2025-07-06 22:40:23作者:乔或婵
背景介绍
在现代分布式系统中,分布式追踪是监控和诊断复杂系统行为的重要工具。LMNR作为一个AI项目,需要收集和分析应用程序的运行轨迹数据。本文将详细介绍如何在Rust应用中实现精准的分布式追踪,只收集业务相关的span数据,避免系统内部细节干扰。
核心问题分析
当使用Rust的tracing和OpenTelemetry库向LMNR后端发送追踪数据时,开发者遇到了一个常见问题:除了自定义的业务span(如gen_number()
和multiply_number()
)外,系统还自动收集了大量底层框架的span(如FramedWrite::buffer
等),这些数据不仅增加了存储负担,也干扰了业务分析。
解决方案
方案一:使用tracing-subscriber的过滤功能
tracing-subscriber提供了强大的过滤机制,可以通过自定义Layer来控制哪些span需要被记录和导出。
use tracing_subscriber::{filter::LevelFilter, Layer};
let filter = LevelFilter::INFO
.and(tracing_subscriber::filter::filter_fn(|metadata| {
// 只记录我们关心的span
metadata.target() == "rust-otlp-basic"
|| metadata.name() == "gen_number"
|| metadata.name() == "multiply_number"
}));
let telemetry = tracing_opentelemetry::layer()
.with_tracer(tracer)
.with_filter(filter);
方案二:OpenTelemetry SpanProcessor过滤
更底层的方案是实现自定义的SpanProcessor,在span创建时进行过滤:
use opentelemetry::sdk::trace::{Span, SpanProcessor};
struct CustomSpanProcessor;
impl SpanProcessor for CustomSpanProcessor {
fn on_start(&self, span: &mut Span) {
let name = span.name();
if !(name == "gen_number" || name == "multiply_number") {
span.set_attribute(KeyValue::new("otel.span.ignore", "true"));
}
}
}
// 在初始化tracer时配置
opentelemetry_otlp::new_pipeline()
.tracing()
.with_trace_config(
trace::config()
.with_span_processor(CustomSpanProcessor)
.with_resource(/*...*/)
)
// ...
最佳实践建议
- 明确span命名规范:为业务span建立统一的命名前缀,如
biz.
,便于过滤 - 分层追踪:区分核心业务逻辑和辅助功能的追踪级别
- 属性标准化:LMNR特定的属性(如
lmnr.span.input
)应统一前缀 - 性能考量:在高频操作中避免过度追踪
实施效果
经过上述优化后,LMNR后端将只接收到业务相关的span数据:
gen_number
span及其属性multiply_number
span及其属性- 清晰的错误追踪链
系统内部的框架级span将被有效过滤,使追踪数据更加清晰、分析更加高效。
总结
在Rust应用中实现精准的分布式追踪需要结合tracing和OpenTelemetry的能力。通过合理的过滤策略,开发者可以确保LMNR后端只收集有价值的业务数据,避免噪声干扰。这种方案不仅适用于当前示例,也可以推广到其他Rust项目的追踪实现中。
登录后查看全文
热门项目推荐
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen-Image我们隆重推出 Qwen-Image,这是通义千问系列中的图像生成基础模型,在复杂文本渲染和精准图像编辑方面取得重大突破。Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~012- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0259- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp音乐播放器项目中的函数调用问题解析
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
820
490

openGauss kernel ~ openGauss is an open source relational database management system
C++
121
175

React Native鸿蒙化仓库
C++
163
254

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
322
1.07 K

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
172
259

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
79
2

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.05 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
818
22

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
719
102

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
568
51