在LMNR项目中实现Rust应用的精准分布式追踪
2025-07-06 20:53:01作者:乔或婵
背景介绍
在现代分布式系统中,分布式追踪是监控和诊断复杂系统行为的重要工具。LMNR作为一个AI项目,需要收集和分析应用程序的运行轨迹数据。本文将详细介绍如何在Rust应用中实现精准的分布式追踪,只收集业务相关的span数据,避免系统内部细节干扰。
核心问题分析
当使用Rust的tracing和OpenTelemetry库向LMNR后端发送追踪数据时,开发者遇到了一个常见问题:除了自定义的业务span(如gen_number()和multiply_number())外,系统还自动收集了大量底层框架的span(如FramedWrite::buffer等),这些数据不仅增加了存储负担,也干扰了业务分析。
解决方案
方案一:使用tracing-subscriber的过滤功能
tracing-subscriber提供了强大的过滤机制,可以通过自定义Layer来控制哪些span需要被记录和导出。
use tracing_subscriber::{filter::LevelFilter, Layer};
let filter = LevelFilter::INFO
.and(tracing_subscriber::filter::filter_fn(|metadata| {
// 只记录我们关心的span
metadata.target() == "rust-otlp-basic"
|| metadata.name() == "gen_number"
|| metadata.name() == "multiply_number"
}));
let telemetry = tracing_opentelemetry::layer()
.with_tracer(tracer)
.with_filter(filter);
方案二:OpenTelemetry SpanProcessor过滤
更底层的方案是实现自定义的SpanProcessor,在span创建时进行过滤:
use opentelemetry::sdk::trace::{Span, SpanProcessor};
struct CustomSpanProcessor;
impl SpanProcessor for CustomSpanProcessor {
fn on_start(&self, span: &mut Span) {
let name = span.name();
if !(name == "gen_number" || name == "multiply_number") {
span.set_attribute(KeyValue::new("otel.span.ignore", "true"));
}
}
}
// 在初始化tracer时配置
opentelemetry_otlp::new_pipeline()
.tracing()
.with_trace_config(
trace::config()
.with_span_processor(CustomSpanProcessor)
.with_resource(/*...*/)
)
// ...
最佳实践建议
- 明确span命名规范:为业务span建立统一的命名前缀,如
biz.,便于过滤 - 分层追踪:区分核心业务逻辑和辅助功能的追踪级别
- 属性标准化:LMNR特定的属性(如
lmnr.span.input)应统一前缀 - 性能考量:在高频操作中避免过度追踪
实施效果
经过上述优化后,LMNR后端将只接收到业务相关的span数据:
gen_numberspan及其属性multiply_numberspan及其属性- 清晰的错误追踪链
系统内部的框架级span将被有效过滤,使追踪数据更加清晰、分析更加高效。
总结
在Rust应用中实现精准的分布式追踪需要结合tracing和OpenTelemetry的能力。通过合理的过滤策略,开发者可以确保LMNR后端只收集有价值的业务数据,避免噪声干扰。这种方案不仅适用于当前示例,也可以推广到其他Rust项目的追踪实现中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120