fairness-in-ml 的项目扩展与二次开发
2025-05-21 17:35:22作者:咎竹峻Karen
项目的基础介绍
本项目是一个开源项目,旨在展示如何在机器学习中实现公平性。项目基于对抗性网络的概念,通过代码示例和实验,探索如何构建公平的机器学习模型。项目的核心是两篇博客文章的代码实现,分别使用 Keras & TensorFlow 和 PyTorch 框架。
项目的核心功能
项目的核心功能是实现机器学习模型中的公平性,通过对抗性网络来减少模型对于不同群体的偏见。具体来说,它包括:
- 实现基于对抗性网络的公平性模型。
- 提供不同数据集上的实验结果。
- 探索公平性模型在不同框架(Keras & TensorFlow,PyTorch)上的实现。
项目使用了哪些框架或库?
项目主要使用了以下框架和库:
- Python:基础的编程语言。
- Keras & TensorFlow:用于构建和训练深度学习模型。
- PyTorch:另一种流行的深度学习框架。
- Conda:用于创建和管理虚拟环境。
项目的代码目录及介绍
项目的代码目录如下:
data/:存放项目使用的数据集。fairness/:包含实现公平性模型的代码。images/:存储可视化结果和图表的文件夹。output/:存放模型训练和测试的输出结果。papers/:可能包含项目相关的论文和研究资料。playground/:包含各种实验性代码和探索性分析。.gitignore:指定 Git 忽略的文件和目录。LICENSE:项目的许可证文件。README.md:项目的说明文件。environment.yml:定义项目所需的虚拟环境。fairness-in-ml.ipynb:Keras & TensorFlow 实现的 Jupyter Notebook。fairness-in-torch.ipynb:PyTorch 实现的 Jupyter Notebook。setup.py:用于安装项目作为 Python 包的脚本。
对项目进行扩展或者二次开发的方向
- 增加新的数据集:将项目扩展到更多类型的数据集上,以验证模型的泛化能力。
- 实现更多公平性指标:添加额外的公平性评估指标,以便更全面地评估模型的公平性。
- 尝试其他框架或库:除了 Keras & TensorFlow 和 PyTorch,可以尝试将模型实现到其他深度学习框架上,如 JAX 或 MXNet。
- 优化模型结构:探索不同的模型架构和训练策略,以提高公平性模型的性能和效率。
- 用户界面和可视化:开发一个用户界面,让用户可以更直观地了解模型的工作原理和效果,同时增强数据可视化的功能。
- 文档和教程:完善项目的文档,编写更多教程,帮助初学者更好地理解和使用项目。
通过上述方向的扩展和二次开发,该项目将能够为机器学习领域的公平性问题提供更多的解决方案和实践案例。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
642
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
642