在langchain-ChatGLM项目中实现知识库原文匹配的技术方案
2025-05-04 22:38:07作者:蔡丛锟
知识库问答系统中一个常见需求是要求系统能够精确返回知识库中的原文内容,而不是经过语言模型润色或解释的版本。本文将以langchain-ChatGLM项目为例,探讨如何实现这一功能。
问题背景
在构建基于大语言模型的知识库问答系统时,开发者经常会遇到一个典型问题:当用户查询知识库中的特定条目时,系统返回的不是知识库中存储的原始内容,而是经过语言模型重新组织和解释的版本。这种"过度润色"在某些场景下是不被期望的,特别是当知识库内容本身就是经过精心设计的标准答案时。
技术实现方案
1. Prompt工程调整
最直接的解决方案是通过修改提示词(Prompt)来引导语言模型的行为。可以在系统提示中加入明确的指令:
"请严格按照<已知信息>中的内容原文输出,不要做任何修改、解释或补充。"
这种方法简单有效,但需要注意:
- 指令需要足够明确和强硬
- 可能需要多次调整措辞以达到最佳效果
- 对于复杂知识库可能需要更精细的prompt设计
2. 输出解析控制
另一种方法是在输出解析阶段进行处理:
- 首先让模型识别出知识库匹配的部分
- 然后提取出原始文本
- 最后直接返回而不经过任何语言模型处理
这种方法需要:
- 设计合理的输出格式
- 编写专门的解析逻辑
- 可能增加系统复杂度
3. 模型微调方案
对于长期需求,可以考虑对模型进行微调:
- 收集包含"原文输出"和"润色输出"对比的训练数据
- 训练模型区分这两种输出模式
- 通过参数或标记控制输出风格
实施建议
对于langchain-ChatGLM项目,推荐采用以下步骤实现原文匹配:
- 检查并修改系统prompt模板
- 在知识库查询结果中添加明确的原文标记
- 测试不同prompt变体的效果
- 必要时添加后处理逻辑确保输出一致性
注意事项
- 原文输出和解释性输出各有适用场景,建议保留切换能力
- 对于多段落知识库内容,需要考虑如何保持原文结构
- 某些情况下可能需要牺牲一定的语言流畅性来保证准确性
通过合理配置,langchain-ChatGLM项目可以很好地满足知识库原文匹配的需求,为特定场景提供更精准的知识检索服务。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1