LLaVA项目微调过程中损失突增问题的分析与解决
2025-05-09 16:44:08作者:凌朦慧Richard
在LLaVA-v1.5-7B模型使用LoRA进行微调的过程中,许多开发者遇到了一个常见但令人困惑的问题:在训练进行到一定阶段时,损失值会突然急剧上升。这种现象通常发生在训练多个epoch时,而在1-2个epoch的训练中则不会出现。
问题现象描述
当使用自定义数据集对LLaVA模型进行LoRA微调时,训练曲线会呈现以下特征:
- 初始阶段损失正常下降
- 经过若干epoch后,损失值突然急剧上升
- 这种突增现象在仅训练1-2个epoch时不会出现
根本原因分析
经过社区开发者的实践验证,损失突增的主要原因是学习率设置不当。具体来说:
- 学习率过高:初始设置的学习率可能导致模型在训练后期"跳过"最优解区域
- 优化不稳定:随着epoch增加,参数更新累积效应使得模型参数进入不良区域
- LoRA敏感性:LoRA层的低秩特性使其对学习率变化更为敏感
解决方案
最有效的解决方法是调整学习率策略:
- 降低学习率:将原始学习率降低10倍(如从1e-4降至1e-5)
- 分层学习率:对LLM主干和projector分别设置不同的学习率
- 学习率调度:采用warmup或余弦退火等策略平滑学习率变化
实施效果
调整学习率后,训练过程表现出:
- 损失曲线更加平滑稳定
- 不再出现突增现象
- 模型最终性能有所提升
- 训练过程更加可控
最佳实践建议
对于LLaVA项目的LoRA微调,建议:
- 从较低学习率开始(如1e-5)
- 监控训练初期的损失变化情况
- 根据实际训练动态调整学习率
- 考虑使用学习率finder工具确定最佳学习率
- 对LLM和projector采用差异化的学习率设置
通过合理的学习率配置,开发者可以避免损失突增问题,获得更稳定、更高效的模型微调效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328