SCAN 项目亮点解析
2025-05-28 07:30:44作者:羿妍玫Ivan
1. 项目的基础介绍
SCAN(Simple language-driven navigation tasks for studying compositional learning)是一个用于研究组合学习和零样本泛化的简单语言驱动导航任务集。该项目的目标是研究序列到序列的循环网络在没有系统性泛化能力的情况下,如何实现组合技能。SCAN 任务由一系列命令和相应的动作序列组成,这些命令和动作是基于原语(如“跳”,“走”,“跑”,“左转”等)以及诸如“两次”、“三次”、“和”、“之后”、“围绕左”等修饰符组合而成的。
2. 项目代码目录及介绍
项目的代码目录如下:
tasks.txt:包含超过 20,000 个 SCAN 命令的完整集合。tasks_train_simple.txt和tasks_test_simple.txt:简单的训练-测试分割,训练集包含 80% 的数据,测试集包含剩余的 20%。tasks_train_length.txt和tasks_test_length.txt:基于长度的训练-测试分割,训练集包含较短的序列,测试集包含较长的序列。tasks_train_addprim_jump.txt和tasks_test_addprim_jump.txt:添加新原语“跳”的训练-测试分割。tasks_train_addprim_turn_left.txt和tasks_test_addprim_turn_left.txt:添加新原语“左转”的训练-测试分割。template_split:添加新模板的训练-测试分割。filler_split:添加原语填充的训练-测试分割。few_shot_split:少量样本情况下的训练-测试分割。simple_split/size_variations:包含不同训练数据量的额外训练-测试分割。add_prim_split/with_additional_examples:添加原语“跳”命令的变体,包括不同数量的组合“跳”命令。
3. 项目亮点功能拆解
SCAN 项目的亮点功能主要包括:
- 提供了一个标准化的任务集,便于研究人员比较不同算法的性能。
- 包含多种训练-测试分割,以研究不同条件下的组合学习和泛化能力。
- 设计了多个变体,以研究向任务集添加新原语或模板时的影响。
4. 项目主要技术亮点拆解
SCAN 项目的主要技术亮点包括:
- 基于简单原语和修饰符的命令定义,使得任务易于理解和组合。
- 提供了丰富的训练-测试分割,允许研究人员在不同条件下测试算法。
- 支持添加新原语和模板,为研究组合学习和泛化提供了灵活性。
5. 与同类项目对比的亮点
与同类项目相比,SCAN 项目的亮点在于:
- 强调了零样本泛化的研究,有助于理解网络在没有看到新命令的情况下如何执行任务。
- 提供了多种任务变体,使得研究更加全面和深入。
- 项目的命令定义和任务设计使得其易于与其他项目进行对比和集成。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
247
2.45 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
546
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
595
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
409
Ascend Extension for PyTorch
Python
85
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
121