Async-profiler对JVM代码缓存内存的影响分析
在Java应用性能分析领域,async-profiler是一款广受青睐的低开销性能分析工具。然而,近期有用户报告在使用async-profiler时观察到了JVM代码缓存(CodeCache)内存使用量显著增加的现象。本文将深入剖析这一现象背后的技术原理,并为开发者提供应对建议。
现象描述
当通过-agentpath参数在JVM启动时加载async-profiler时,用户发现:
- 代码缓存中的profiled和non-profiled nmethods内存区域使用量明显上升
- 代码缓存更快达到容量上限(默认240MB)
- 在长时间运行的JVM中,这种内存增长可能导致接近或达到代码缓存容量限制
根本原因
async-profiler在加载时会自动启用JVM的-XX:+DebugNonSafepoints标志。这个标志的作用是让JIT编译器在生成编译代码时额外包含调试信息。这些调试信息对于确保性能分析结果的准确性至关重要,特别是:
- 正确映射机器指令地址到字节码索引
- 确保最顶层内联帧的堆栈跟踪准确性
- 避免分析结果中出现偏移量不准确的堆栈帧
这种额外的调试信息自然会导致编译后的代码体积增大,从而占用更多代码缓存空间。这种现象与直接使用-XX:+DebugNonSafepointsJVM参数时观察到的效果一致。
影响范围
这种内存增长的影响程度取决于:
- 加载时机:越早加载async-profiler,影响越大(因为更多方法会在调试信息开启状态下被编译)
- 应用特性:方法数量多、代码路径复杂的应用受影响更明显
- 运行时长:长时间运行的应用更容易积累较大的代码缓存占用
解决方案
开发者有以下几种应对策略:
-
增加代码缓存容量:通过
-XX:ReservedCodeCacheSize参数调大代码缓存限制 -
控制DebugNonSafepoints:在JVM启动参数中明确指定
-XX:-DebugNonSafepoints可以避免内存增长,但会牺牲部分分析精度 -
延迟加载:若非必要,避免在启动时通过
-agentpath加载,改为在需要时通过asprof命令附加 -
监控代码缓存:对于长时间运行的应用,建议监控代码缓存使用情况,预防溢出
最佳实践建议
- 对于内存敏感的环境,建议评估是否真的需要启动时加载profiler
- 在测试环境评估代码缓存使用情况,合理设置缓存大小
- 权衡分析精度与内存开销,根据实际需求决定是否启用DebugNonSafepoints
- 考虑使用较新版本的async-profiler,其中已包含相关优化
技术展望
值得注意的是,JVM社区正在考虑将类似机制引入JFR(JDK Flight Recorder),这进一步印证了调试信息对于性能分析准确性的重要性。未来可能会有更精细的调试信息控制机制出现,以更好地平衡内存开销与分析精度。
通过理解这些底层机制,开发者可以更明智地使用async-profiler,在性能分析和系统资源消耗之间取得最佳平衡。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00