探索ASER:大规模事件知识图谱的宝藏
2024-06-07 22:09:08作者:何将鹤
在人工智能和自然语言处理的世界中,理解语境中的行为、状态和事件及其关系是至关重要的。为此,我们引荐一个强大的开源工具——ASER(Activities, States, Events, and their Relations)。这个大型的、加权的事件知识图谱包含数以亿计的活动、状态、事件节点以及它们之间的连接。
项目介绍
ASER是一个创新的知识库,它通过选择特定的依存关系模式从文本中提取事件性信息,并基于语篇关系(如结果关系)来构建这些事件之间的边。此外,该项目还进行了概念化处理,将事件提升到更抽象的层次,进一步增强其通用性。目前,ASER分为三个版本:
- ASER (full) 包含4亿3千8百万个事件和6亿4千8百万条边。
- ASER (core) 包含53百万个事件和52百万条边。
- ASER (concept) 利用Probase(现为Microsoft Concept Graph),包含了15百万个概念化的事件和2亿2千4百万条边。
项目主页提供了详细信息和数据下载链接:https://hkust-knowcomp.github.io/ASER/。并且,即将上线的在线演示将让用户体验更加直观。
项目技术分析
ASER采用先进的自然语言处理技术,包括依存句法分析和语篇关系识别。其核心算法通过选取特定的依赖树结构模式来抽取事件实体,再利用语篇分析的规则建立事件间的关联。这一过程有效地捕获了文本中的深层知识结构。最新的ASER 2.1版本引入了原始文本标记作为事件,并通过依赖解析器检查完整性。
应用场景
ASER可以广泛应用于多个领域,如:
- 智能问答:帮助系统理解和回答涉及复杂事件链的问题。
- 机器阅读理解:提供上下文理解的背景知识。
- 情感分析:捕捉事件之间的因果关系以理解情绪变化。
- 自然语言生成:用于创造多样性和连贯性的文本。
- 常识推理:作为基础资源,支持复杂的推理任务。
项目特点
- 大规模: 拥有数亿级的事件节点和边,覆盖广泛的主题和情境。
- 精细粒度: 事件不仅包括基本动作,还包括状态和事件,以及它们的相互作用。
- 事件关系: 基于语篇关系的边,揭示了事件之间的动态和因果联系。
- 可扩展性: 通过概念化处理,能够泛化知识并适应新的场景。
- 开放源代码: 提供完整的构建流程,方便研究人员和开发者使用和改进。
要开始探索ASER,请参考get_started.ipynb
或项目文档。立即行动,利用ASER释放你的下一个自然语言处理项目潜力!
引用:
@article{ZhangLPKOFS22,
author = {Hongming Zhang and
Xin Liu and
Haojie Pan and
Haowen Ke and
Jiefu Ou and
Tianqing Fang and
Yangqiu Song},
title = {{ASER:} Towards Large-scale Commonsense Knowledge Acquisition via Higher-order Selectional Preference over Eventualities},
journal = {Artificial Intelligence},
volume = {309},
pages = {103740},
year = {2022},
}
@inproceedings{ZhangLPSL20,
author = {Hongming Zhang and
Xin Liu and
Haojie Pan and
Yangqiu Song and
Cane Wing{-}Ki Leung},
title = {{ASER:} {A} Large-scale Eventuality Knowledge Graph},
booktitle = {WWW},
pages = {201--211},
year = {2020}
}
准备好挖掘ASER的无限潜能了吗?赶紧行动起来,加入这个激动人心的知识探索之旅吧!
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
46
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44