Conan 2.13.0 发布:构建工具链与依赖管理的全面升级
Conan 是一个开源的 C/C++ 包管理器,旨在简化 C/C++ 项目的依赖管理和构建过程。它支持跨平台开发,能够帮助开发者轻松管理项目依赖,并确保在不同环境中构建的一致性。随着 2.13.0 版本的发布,Conan 在构建工具链、依赖管理和工作空间支持等方面带来了多项重要改进。
CMake 工具链的增强
本次更新对 CMake 相关的工具链支持进行了显著增强。CMakeDeps 生成器现在能够为 cmake_additional_variables_prefixes 定义 {prefix}_FOUND 和 {prefix}_VERSION 变量,这使得 CMake 脚本能够更灵活地检测和使用依赖包。此外,新增的 CMAKE_LIBRARY_PATH 和 CMAKE_INCLUDE_PATH 被添加到 conan_cmakedeps_paths.cmake 中,进一步改善了库和头文件的查找机制。
对于正在孵化的 CMakeConfigDeps 生成器,现在可以通过配置标志在 conanfile 中使用。这个新特性为构建系统提供了更现代的 CMake 配置方式,是未来 CMake 集成的重要发展方向。
工作空间功能的完善
工作空间(Workspace)功能在 2.13.0 版本中得到了显著增强。新增的 workspace install 命令专门为包含多个可编辑(editable)包的超级项目设计,极大地简化了大型项目的开发流程。配合这一改进,conan new workspace 模板现在包含了一个基于 CMake 的超级项目结构,开发者可以快速搭建适合工作空间模式的项目框架。
这些改进使得在开发大型项目时,能够更方便地管理多个相互依赖的组件,同时保持高效的开发迭代速度。
依赖管理与版本控制
在依赖管理方面,2.13.0 版本引入了多项实用功能。新增的 lock upgrade 命令可以自动升级指定的依赖项并解析依赖图,大大简化了依赖版本升级的过程。Version 类新增的 in_range 方法提供了方便的版本范围比较功能,使得依赖版本约束更加灵活。
对于本地配方索引(local-recipes-index)远程源,现在当请求特定修订版本时会显示警告信息,帮助开发者避免潜在的版本冲突问题。
构建系统与工具链改进
构建系统支持方面,AutotoolsToolchain 现在允许从配置(conf)中获取构建上下文信息,提高了配置的灵活性。对于 MinGW 编译器,settings.yml 新增了 mcf 线程模型支持,完善了对 GCC MinGW 工具链的兼容性。
Premake 工具的 CLI 包装器也得到了增强,现在支持配置 Lua 文件路径和自定义命令行参数,为使用 Premake 的项目提供了更大的灵活性。
性能与稳定性优化
在性能方面,解压(untar)操作的性能得到了显著提升。运行时部署(runtime_deploy)现在能够正确处理符号链接及其关联的库文件,解决了之前可能导致的运行时依赖问题。
错误处理机制也有所改进,现在对于组件定义错误和运行时冲突会提供更清晰的错误信息。同时,修复了 _calculate_licenses SBOM 方法中的错误,并添加了相应的测试用例。
安全与兼容性更新
在安全方面,Conan 2.13.0 将 urllib3 依赖升级到了 2.0 版本,确保了网络通信的安全性。对于 msys2 子系统,现在能够正确继承环境变量中的路径设置,提高了在 Windows 平台下的兼容性。
总结
Conan 2.13.0 版本在构建工具链支持、依赖管理、工作空间功能和整体稳定性等方面都带来了重要改进。这些变化不仅提高了开发效率,也为大型项目的管理提供了更好的支持。对于 C/C++ 开发者而言,升级到 2.13.0 版本将能够体验到更流畅、更强大的包管理和构建体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00