adapter-transformers项目中T5模型的LoRA并行组合前向传播Bug分析
2025-06-29 22:48:56作者:邬祺芯Juliet
在adapter-transformers项目的最新版本中,我们发现了一个关于T5模型使用LoRA并行适配器时的前向传播Bug。这个Bug会导致在多个LoRA适配器并行组合使用时出现张量形状不匹配的问题,而单独使用单个适配器时则能正常工作。
问题现象
当开发者在Flan-T5-base模型上同时激活多个LoRA适配器进行并行组合时,模型的前向传播会抛出RuntimeError异常,提示张量形状不匹配。具体表现为:
- 在计算注意力分数时,query张量的形状为[1,12,700,64]
- key张量的形状为[1,12,140,64]
- 其中700是140(序列长度)乘以5(并行适配器数量)的结果
这种形状不匹配导致无法正确计算注意力分数,最终引发运行时错误。
技术背景
LoRA(Low-Rank Adaptation)是一种高效的模型微调方法,它通过向模型注入低秩矩阵来实现参数高效微调。在adapter-transformers项目中,开发者可以通过并行组合机制同时使用多个适配器,这在多任务学习等场景下非常有用。
T5模型采用编码器-解码器架构,其自注意力机制需要计算query和key的点积来得到注意力分数。正常情况下,query和key的形状应该匹配,或者至少在某些维度上可以广播。
问题根源分析
通过深入分析错误堆栈和代码实现,我们发现问题的根源在于:
- 当使用并行适配器时,输入张量会在适配器维度上被复制扩展
- 但在计算注意力时,key张量没有相应地进行扩展
- 导致query张量的序列长度维度变为原始长度的N倍(N为并行适配器数量)
- 而key张量保持原始序列长度,无法匹配
具体来说,在T5AttentionWithAdapters类的forward方法中,当计算scores += position_bias_masked时,两个张量的形状不兼容。
解决方案
正确的实现应该是:
- 在并行适配器模式下,确保所有参与注意力计算的张量都正确扩展了适配器维度
- 或者保持原始序列长度不变,在适配器维度上进行并行计算
- 需要统一query、key和position_bias的张量形状处理逻辑
影响范围
该Bug影响所有使用以下配置的用户:
- T5系列模型(包括Flan-T5)
- 使用LoRA适配器
- 通过Parallel组合多个适配器
- 进行前向传播计算
临时解决方案
在官方修复发布前,用户可以:
- 避免使用并行适配器组合,改为逐个使用单个适配器
- 或者手动修改模型代码,确保注意力计算时的张量形状一致
总结
这个Bug揭示了在实现复杂适配器组合时,需要特别注意张量形状在不同层间的传递一致性。特别是在并行计算模式下,需要确保所有相关操作都能正确处理扩展后的张量维度。对于使用adapter-transformers进行多适配器实验的研究人员和开发者,建议关注该问题的修复进展,以确保实验结果的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19