adapter-transformers项目中T5模型的LoRA并行组合前向传播Bug分析
2025-06-29 11:58:55作者:邬祺芯Juliet
在adapter-transformers项目的最新版本中,我们发现了一个关于T5模型使用LoRA并行适配器时的前向传播Bug。这个Bug会导致在多个LoRA适配器并行组合使用时出现张量形状不匹配的问题,而单独使用单个适配器时则能正常工作。
问题现象
当开发者在Flan-T5-base模型上同时激活多个LoRA适配器进行并行组合时,模型的前向传播会抛出RuntimeError异常,提示张量形状不匹配。具体表现为:
- 在计算注意力分数时,query张量的形状为[1,12,700,64]
- key张量的形状为[1,12,140,64]
- 其中700是140(序列长度)乘以5(并行适配器数量)的结果
这种形状不匹配导致无法正确计算注意力分数,最终引发运行时错误。
技术背景
LoRA(Low-Rank Adaptation)是一种高效的模型微调方法,它通过向模型注入低秩矩阵来实现参数高效微调。在adapter-transformers项目中,开发者可以通过并行组合机制同时使用多个适配器,这在多任务学习等场景下非常有用。
T5模型采用编码器-解码器架构,其自注意力机制需要计算query和key的点积来得到注意力分数。正常情况下,query和key的形状应该匹配,或者至少在某些维度上可以广播。
问题根源分析
通过深入分析错误堆栈和代码实现,我们发现问题的根源在于:
- 当使用并行适配器时,输入张量会在适配器维度上被复制扩展
- 但在计算注意力时,key张量没有相应地进行扩展
- 导致query张量的序列长度维度变为原始长度的N倍(N为并行适配器数量)
- 而key张量保持原始序列长度,无法匹配
具体来说,在T5AttentionWithAdapters类的forward方法中,当计算scores += position_bias_masked时,两个张量的形状不兼容。
解决方案
正确的实现应该是:
- 在并行适配器模式下,确保所有参与注意力计算的张量都正确扩展了适配器维度
- 或者保持原始序列长度不变,在适配器维度上进行并行计算
- 需要统一query、key和position_bias的张量形状处理逻辑
影响范围
该Bug影响所有使用以下配置的用户:
- T5系列模型(包括Flan-T5)
- 使用LoRA适配器
- 通过Parallel组合多个适配器
- 进行前向传播计算
临时解决方案
在官方修复发布前,用户可以:
- 避免使用并行适配器组合,改为逐个使用单个适配器
- 或者手动修改模型代码,确保注意力计算时的张量形状一致
总结
这个Bug揭示了在实现复杂适配器组合时,需要特别注意张量形状在不同层间的传递一致性。特别是在并行计算模式下,需要确保所有相关操作都能正确处理扩展后的张量维度。对于使用adapter-transformers进行多适配器实验的研究人员和开发者,建议关注该问题的修复进展,以确保实验结果的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
131
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
738
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
199
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460