Harvester项目中Longhorn v2存储类镜像上传问题分析与解决方案
问题背景
在Harvester v1.5.0-rc2版本中,用户报告了一个关于Longhorn v2存储类的重要问题:当尝试向使用Longhorn v2作为提供程序的存储类添加镜像时,操作会挂起无法完成。这一问题不仅影响了原生Harvester UI中的操作,也影响了通过上游Rancher集群导入Harvester后的使用体验。
问题现象分析
从技术角度看,该问题表现为以下几个关键现象:
- 镜像创建和上传过程无响应,操作界面卡住
- Longhorn UI中显示相关卷状态为"faulted"(故障)
- 系统日志显示无法为副本找到合适的磁盘
- 底层存储设备存在资源繁忙的错误提示
根本原因
经过深入分析,发现问题主要由以下几个技术因素导致:
-
磁盘准备不充分:Longhorn v2副本无法找到合适的磁盘进行创建,因为节点CRD中没有为v2卷配置任何磁盘。
-
遗留LVM配置冲突:系统检测到磁盘上存在旧的LVM卷组配置(可能是之前Harvester集群使用的),这些配置自动启用并与新配置产生冲突。
-
存储清理机制不足:Node Disk Manager(NDM)在遇到LVM设备时没有执行必要的清理操作,导致后续的wipefs、mkfs和mount命令无法正常执行。
-
NVMe存储的特殊要求:对于非NVMe存储设备,Longhorn v2有特定的容量要求(必须是4096字节的倍数),但系统没有提供明确的错误提示。
解决方案与验证
针对这一问题,开发团队采取了以下措施:
-
环境清理:对于存在遗留LVM配置的环境,需要手动移除LVM设备,然后执行wipefs、mkfs和mount命令来重新准备磁盘。
-
增强机制:提出了两个增强性改进方案:
- 改进磁盘准备流程,确保在提供给Longhorn v2使用前完成必要的清理和格式化
- 增强用户界面提示,帮助用户了解主机存储状况
-
版本验证:在v1.5.0-rc4版本中验证了解决方案的有效性,确认在正确配置磁盘后问题得到解决。
最佳实践建议
基于这一问题的分析,我们建议Harvester用户在使用Longhorn v2存储类时注意以下几点:
-
存储设备准备:
- 确保磁盘完全清理干净,没有遗留的分区或卷组
- 对于非NVMe设备,确保容量是4096字节的倍数
-
环境检查:
- 部署集群后,先检查Longhorn节点CRD中的磁盘配置
- 确认NDM能够正确识别和管理所有可用磁盘
-
问题排查:
- 遇到类似问题时,首先检查Longhorn UI中的卷状态
- 查看系统日志中关于磁盘准备和副本创建的错误信息
-
版本选择:
- 建议使用v1.5.0-rc4或更高版本,其中包含了相关改进
总结
Harvester与Longhorn v2的集成提供了强大的存储解决方案,但在实际部署中需要注意存储设备的准备和配置。通过理解这一问题的技术背景和解决方案,用户可以更有效地部署和管理基于Harvester的存储基础设施。未来版本中,随着相关增强功能的实现,这一过程的用户体验将得到进一步改善。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00