skorch项目中训练集上采样对验证分数的影响分析
2025-06-04 03:38:41作者:殷蕙予
背景介绍
在使用skorch训练神经网络分类器时,开发者经常会遇到一个典型现象:日志中显示的评估指标(如F1分数)与事后验证(post-hoc evaluation)结果存在显著差异。特别是在处理类别不平衡数据集时,这种现象更为常见。本文将深入分析这一现象背后的技术原因,并解释上采样技术如何影响模型评估结果。
问题现象
当使用skorch训练神经网络分类器时,开发者观察到:
- 训练过程中日志显示的F1分数(包括训练集和验证集)比事后验证结果高出约0.1
- ROC AUC分数在两种评估方式下表现一致
- 数据集存在严重的类别不平衡问题
根本原因分析
经过深入排查,发现问题根源在于训练数据的上采样处理。具体机制如下:
-
上采样技术原理:为解决类别不平衡问题,开发者通常会对少数类样本进行上采样,增加其在训练集中的比例
-
交叉验证中的数据泄露:当在上采样后的数据集上执行交叉验证时:
- 训练集和验证集都包含上采样生成的样本
- 这些人工生成的样本会导致模型性能被高估
- 验证分数因此出现"虚高"现象
-
指标差异解释:
- F1分数对类别分布敏感,受上采样影响显著
- ROC AUC基于排序评估,对类别分布变化相对鲁棒
解决方案与最佳实践
为避免这种评估偏差,推荐以下做法:
-
正确的数据分割流程:
# 错误做法:先上采样再分割 X_resampled, y_resampled = upsample(X, y) X_train, X_val, y_train, y_val = train_test_split(X_resampled, y_resampled) # 正确做法:先分割再上采样 X_train, X_val, y_train, y_val = train_test_split(X, y) X_train_resampled, y_train_resampled = upsample(X_train, y_train) -
替代不平衡处理方法:
- 类别加权(class weighting)
- 改进的采样策略(如SMOTE)
- 专门设计的损失函数(如Focal Loss)
-
评估策略建议:
- 保持测试集原始分布不变
- 使用多种评估指标综合判断
- 考虑添加PR曲线(Precision-Recall Curve)评估
总结
在skorch或任何机器学习框架中处理不平衡数据时,数据预处理流程对模型评估结果有重大影响。上采样操作必须在训练-验证分割之后进行,否则会导致验证分数虚高,产生误导性的模型性能评估。开发者应当充分理解各种采样技术对评估流程的影响,选择适当的方法来处理类别不平衡问题。
对于严重不平衡数据集的场景,建议结合多种技术手段(如采样+加权+专用损失函数),并通过保持原始分布的独立测试集来获得真实的模型性能评估。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758