首页
/ openMVS中NCC代价函数梯度计算的系数问题分析

openMVS中NCC代价函数梯度计算的系数问题分析

2025-06-20 11:25:07作者:牧宁李

背景介绍

在计算机视觉和三维重建领域,归一化互相关(Normalized Cross Correlation, NCC)是一种常用的图像相似性度量方法。在开源项目openMVS中,NCC被广泛应用于表面演化(surface evolution)过程中的代价函数计算。近期有开发者在研究openMVS的源码实现时,发现NCC代价函数梯度计算中可能存在一个系数缺失的问题。

NCC代价函数基本原理

NCC是一种衡量两幅图像相似度的方法,其数学表达式为:

ZNCC = (1/n) * Σ[(A_i - μ_A)(B_i - μ_B)] / (σ_A * σ_B)

其中:

  • A_i和B_i分别表示图像A和B在像素i处的强度值
  • μ_A和μ_B是两幅图像的均值
  • σ_A和σ_B是两幅图像的标准差
  • n是参与计算的像素总数

在openMVS的表面演化过程中,NCC被用作优化目标函数,通过梯度下降法不断调整三维模型参数,使得从不同视角渲染的图像具有最大的NCC相似度。

梯度计算问题分析

在openMVS的SceneRefine.cpp文件中,NCC代价函数的梯度计算实现如下:

const Real dZNCC((Real)imageA(r,c)*invSqrtVAVB - (Real)imageB(r,c)*ZNCCinvVB + imageMeanB(r,c)*ZNCCinvVB - imageMeanA(r,c)*invSqrtVAVB);

经过仔细推导发现,该表达式缺少了一个1/n的系数。这个系数在数学推导中应当存在,因为它来自于NCC定义中的平均值计算部分。

问题影响评估

虽然这个缺失的系数不会影响优化过程的收敛性(因为它可以被吸收到学习率中),但从数学严谨性的角度来看,完整的梯度表达式应当包含这个系数。在openMVS的后续代码中,确实在另一个位置(第888行)正确地包含了这个系数。

技术讨论延伸

这个发现引发了关于表面演化和三维重建方法的更广泛讨论。特别是关于如何将基于网格的表面演化与高斯泼溅(Gaussian Splatting)技术相结合的探索:

  1. 表面表示方法:传统的网格表示与新兴的高斯表示各有优势,如何结合两者的优点是一个研究方向。

  2. 拓扑处理:在优化过程中,网格拓扑结构的变化需要特殊处理,而高斯表示在这方面更具灵活性。

  3. 渲染与几何一致性:高质量的渲染结果不一定对应精确的几何结构,如何设计既能保证渲染质量又能优化几何精度的表示方法是关键。

结论与建议

openMVS中NCC梯度计算的系数问题虽然不影响实际优化效果,但从数学完整性的角度建议进行修正。这一发现也启发我们思考三维重建领域中不同表示方法的融合可能性。未来的工作可以探索:

  1. 将网格的显式表示与高斯泼溅的隐式表示相结合
  2. 开发支持拓扑变化的网格优化算法
  3. 研究基于测地距离的高斯分布定义方法

这些方向有望推动三维重建技术向更高精度、更高效能的方向发展。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
61
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133