tarpc:Rust中的易用RPC框架
2024-05-22 02:48:59作者:冯爽妲Honey
简介
tarpc是一个专为Rust设计的远程过程调用(RPC)框架,注重简洁和便捷性。定义服务只需几行代码,并且大部分服务器的繁琐工作都已为你处理好。不是Google的官方产品,但由其开发团队维护。
项目技术分析
tarpc与其他RPC框架的最大区别在于它在代码中定义服务规范,而非依赖如.proto这样的独立语言。这意味着没有额外的编译步骤,也不需要在不同语言之间切换。核心特性包括:
- 可插拔传输:任何实现了
Stream<Item = Request> + Sink<Response>的类型都可以作为客户端和服务端之间的传输层。 - 非必需的'Send + 'static:如果传输层不需要,tarpc也不会强制要求。
- 级联取消:当请求被取消时,会向服务器发送取消消息。服务器将停止对该请求的未完成工作,并可能进一步取消自身产生的请求,形成级联效应。
- 自定义超时与超时传播:默认请求超时时间为10秒。服务器会在超时时自动停止工作,并将超时传递给下游请求。
- 分布式追踪:集成tracing和OpenTelemetry,支持Jaeger等兼容的跟踪收集器,或者直接与常规日志记录器配合使用。
- Serde序列化:启用
serde1Cargo功能后,服务请求和响应可以实现Serialize + Deserialize,但不是强制性的,不需序列化的场景可以选择内存传输。
应用场景
tarpc适用于构建微服务架构,尤其适合那些希望在代码中直接定义服务接口的项目。例如,可以在多个内部服务之间进行高效的数据交互,或者搭建跨网络通信的服务集群。
项目特点
- 简单快速的定义服务:使用
tarpc::service宏,可以轻松快捷地定义服务并实现其业务逻辑。 - 灵活的传输层:能够适应各种传输方式,包括但不限于网络和内存通道。
- 无侵入的API:tarpc提供的API既不增加额外的编程模型复杂度,又保持了Rust本身的良好体验。
- 高性能与低延迟:由于无需跨语言边界,tarpc通常能提供更高效的性能和更低的延迟。
示例代码
以下是一个使用tokio的简单示例,展示了如何创建一个简单的RPC服务:
use futures::future::{self, Ready};
use tarpc::{
client, context,
server::{self, Channel},
};
// 定义服务
#[tarpc::service]
trait World {
async fn hello(name: String) -> String;
}
// 实现服务
#[derive(Clone)]
struct HelloServer;
impl World for HelloServer {
type HelloFut = Ready<String>;
fn hello(self, _: context::Context, name: String) -> Self::HelloFut {
future::ready(format!("Hello, {name}!"))
}
}
// 主程序启动服务并创建客户端
#[tokio::main]
async fn main() -> anyhow::Result<()> {
let (client_transport, server_transport) = tarpc::transport::channel::unbounded();
let server = server::BaseChannel::with_defaults(server_transport);
tokio::spawn(server.execute(HelloServer.serve()));
let client = WorldClient::new(client::Config::default(), client_transport).spawn();
let hello = client.hello(context::current(), "Stim".to_string()).await?;
println!("{}", hello);
Ok(())
}
总结来说,tarpc是Rust社区的一款强大而易于上手的RPC解决方案。无论是初学者还是经验丰富的开发者,都能从中受益,减少服务开发的复杂性和时间成本。立即尝试tarpc,体验简单高效的RPC编程吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178