Thuthesis模板中参考文献著者缩写格式问题解析
清华大学学位论文LaTeX模板Thuthesis在参考文献著者姓名缩写处理上存在与国家标准不完全一致的情况。本文将详细分析该问题产生的原因、技术背景以及解决方案。
问题背景
根据《研究生学位论文写作指南》要求,参考文献中著者姓名缩写应遵循GB/T 28039-2011标准:
- 汉语拼音人名:姓全写,名取每个汉字拼音的首字母
- 欧美著者:名可用缩写字母,省略缩写点
- 中译欧美著者:只著录其姓
- 同姓不同名欧美著者:需著录姓和名的首字母
然而,Thuthesis模板当前实现将所有著者名统一缩写为一个字母,这与标准要求存在差异。
技术原因分析
该问题的技术根源在于BibTeX处理机制的限制:
-
姓名识别困难:BibTeX无法自动判断一个名字是否属于"汉语拼音书写的人名"。外籍华人姓名可能符合拼音格式但不应视为汉语拼音,而某些西方人名(如Fatou、Fubini)也可能被误判。
-
格式处理机制:模板使用的BST文件(thuthesis-numeric.bst)中,姓名格式化函数默认采用单字母缩写方式,这是BibTeX的常见处理方式。
-
多字节字符处理:对于中文拼音姓名,BibTeX难以自动拆分汉字对应的拼音部分进行多字母缩写。
解决方案
方案一:禁用缩写(推荐)
最简单可靠的解决方案是禁用所有缩写,保持姓名完整。这完全符合标准要求,因为标准中缩写是"可选的"而非强制。
修改方法:在BST文件中找到姓名格式化行,修改为:
{ t #1 "{vv~}{ll}{ ff}" format.name$
方案二:手动拆分拼音姓名
如需保持缩写格式,对于中文拼音姓名,可在.bib文件中手动拆分名字:
Zhihao Jia → Zhi Hao, Jia
这样处理后,输出将为"Jia Z H",符合每个汉字取首字母的要求。
方案三:定制姓名处理函数
高级用户可修改BST文件,添加针对拼音姓名的特殊处理逻辑,但这需要较强的BibTeX编程能力,且仍无法完美解决所有边界情况。
实践建议
-
对于大多数用户,推荐采用方案一禁用缩写,既符合标准又简单可靠。
-
如需保持缩写格式,建议:
- 对中文文献作者采用方案二手动处理
- 接受西方作者单字母缩写的现状(实际影响较小)
-
在最终提交前,应人工检查参考文献格式是否符合学校要求。
总结
Thuthesis模板的姓名缩写处理虽然存在与国标的差异,但通过简单配置即可满足要求。用户应根据自身需求选择最适合的解决方案,在格式规范与实现复杂度之间取得平衡。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00