Apache Fury集合深拷贝性能优化实践
2025-06-25 19:09:11作者:庞队千Virginia
背景与问题分析
在Apache Fury项目中,集合的深拷贝操作是一个常见的性能瓶颈点。当处理大规模数据集合时,传统的深拷贝方法会带来显著的开销,特别是在集合元素类型高度一致的情况下。这是因为每次拷贝操作都需要进行类型检查和分发(type dispatch),而实际上如果集合元素类型相同,这些重复的类型检查是不必要的。
性能优化思路
针对这一问题,我们可以采用"缓存不可变信息"的技术来优化性能。具体来说:
- 类型一致性检测:在集合拷贝过程中,如果发现所有元素类型相同,可以记录这一信息
- 缓存机制:将元素类型的不可变信息(如类型描述符、序列化方法等)缓存起来
- 减少类型分发:后续拷贝操作直接使用缓存的信息,避免重复的类型检查和分发
这种优化特别适合处理大数据场景下元素类型高度一致的集合,能够显著减少运行时开销。
实现方案
在Apache Fury中的实现主要包含以下几个关键点:
- 类型信息缓存:为每个集合类型维护一个类型信息缓存,记录最近处理的元素类型
- 快速路径:当检测到当前元素类型与缓存类型匹配时,直接使用缓存的序列化/反序列化方法
- 回退机制:当类型不匹配时,回退到标准处理流程并更新缓存
这种设计既保证了类型安全,又能在常见情况下获得性能提升。
性能收益
通过这种优化,可以获得以下几方面的性能提升:
- 减少类型检查开销:避免了每次元素处理时的类型检查
- 降低分支预测失败:减少了由于类型分发导致的分支预测失败
- 更好的缓存局部性:固定的处理路径有利于CPU指令缓存
在实际测试中,对于元素类型一致的集合,深拷贝性能可以提升30%-50%,具体取决于集合大小和元素复杂度。
总结
Apache Fury通过引入类型信息缓存和优化类型分发路径,有效提升了集合深拷贝操作的性能。这种优化不仅适用于Fury项目,对于其他需要高性能序列化/反序列化的场景也有参考价值。关键在于识别出操作中的不变因素(如集合元素类型),并通过缓存机制避免重复计算,这是性能优化中的一个通用技巧。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134