ZOO-Attack 项目使用教程
2024-08-30 22:45:57作者:宣聪麟
1. 项目的目录结构及介绍
ZOO-Attack 项目的目录结构如下:
ZOO-Attack/
├── COPYRIGHT
├── LICENSE
├── README.md
├── cifar_blackbox.py
├── l0_attack.py
├── l2_attack.py
├── l2_attack_black.py
├── li_attack.py
├── mnist_blackbox.py
├── retrain.py
├── setup_cifar.py
├── setup_inception.py
├── setup_mnist.py
├── substitute_blackbox.py
├── test_all.py
├── test_attack.py
├── test_attack_black.py
├── train_models.py
└── verify.py
目录结构介绍
COPYRIGHT
: 版权信息文件。LICENSE
: 项目许可证文件,采用 Apache-2.0 许可证。README.md
: 项目说明文档。cifar_blackbox.py
: 用于 CIFAR 数据集的黑盒攻击脚本。l0_attack.py
: L0 攻击脚本。l2_attack.py
: L2 攻击脚本。l2_attack_black.py
: L2 黑盒攻击脚本。li_attack.py
: Li 攻击脚本。mnist_blackbox.py
: 用于 MNIST 数据集的黑盒攻击脚本。retrain.py
: 重新训练模型的脚本。setup_cifar.py
: 设置 CIFAR 数据集的脚本。setup_inception.py
: 设置 Inception 模型的脚本。setup_mnist.py
: 设置 MNIST 数据集的脚本。substitute_blackbox.py
: 替代黑盒模型的脚本。test_all.py
: 测试所有攻击的脚本。test_attack.py
: 测试攻击的脚本。test_attack_black.py
: 测试黑盒攻击的脚本。train_models.py
: 训练模型的脚本。verify.py
: 验证脚本。
2. 项目的启动文件介绍
项目的启动文件主要是 test_all.py
,它是一个统一的接口脚本,用于运行各种攻击测试。
test_all.py
介绍
- 功能: 运行各种黑盒攻击测试。
- 使用方法: 通过命令行参数指定不同的攻击类型、数据集、迭代次数等。
示例命令:
python3 test_all.py --untargeted -a black -d imagenet -n 150 --solver adam -b 1 -c 10.0 --use_resize --reset_adam -m 1500 -p 10 -s "imagenet_untargeted"
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过命令行参数在运行时进行配置。主要的配置参数包括:
-a
或--attack
: 指定攻击类型,如black
。-d
或--dataset
: 指定数据集,如imagenet
。-n
或--num_images
: 指定图像数量。--solver
: 指定求解器,如adam
。-b
或--binary_search_steps
: 指定二分搜索步数。-c
或--confidence
: 指定置信度参数。--use_resize
: 使用图像大小调整进行攻击空间维度降低。--reset_adam
: 重置 ADAM 状态。-m
或--max_iterations
: 指定最大迭代次数。-p
或--print_every
: 指定每多少次迭代打印一次损失。-s
或--save_path
: 指定保存攻击图像的路径。
通过这些参数,可以在运行时灵活配置攻击的各项参数。
以上是 ZOO-Attack 项目的使用教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0297ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++063Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
176
2.08 K

React Native鸿蒙化仓库
C++
204
280

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
957
568

Ascend Extension for PyTorch
Python
55
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
399

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
539
66

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
123
634