Super-Gradients 训练过程中目标检测预测结果的可视化日志记录
2025-06-11 09:16:27作者:龚格成
在目标检测模型的训练过程中,开发者经常需要实时监控模型的预测效果,以便及时发现问题并调整训练策略。Super-Gradients框架提供了强大的可视化日志功能,支持在训练过程中记录边界框预测结果。
训练过程中的预测可视化
Super-Gradients框架内置了对训练过程中预测结果的可视化支持。在目标检测任务中,系统会自动在每个训练周期(epoch)结束后记录模型的预测效果,包括:
- 输入图像
- 真实标注的边界框(ground truth)
- 模型预测的边界框
这些可视化结果会被自动记录到TensorBoard或Weights & Biases等日志工具中,开发者可以实时查看模型在不同训练阶段的预测效果变化。
配置日志记录
要启用预测结果的可视化日志记录,需要在训练配置中正确设置日志记录器。对于Weights & Biases(W&B)日志记录器,配置示例如下:
{
"sg_logger": "wandb_sg_logger",
"sg_logger_params": {
"project_name": "your_project_name",
"save_checkpoints_remote": True,
"save_tensorboard_remote": True,
"save_logs_remote": True,
"entity": "your_entity_name"
}
}
日志记录频率
Super-Gradients框架默认在每个训练周期结束后记录预测结果。这种设计避免了过于频繁的日志记录影响训练性能,同时又能让开发者及时了解模型的学习进展。
可视化内容解析
在训练过程中记录的可视化结果通常包含以下关键信息:
- 输入图像:原始输入图像,用于直观理解模型处理的内容
- 真实标注:以特定颜色(通常是绿色)显示的标注边界框和类别标签
- 模型预测:以不同颜色(通常是红色)显示的预测边界框,通常还会显示置信度分数
通过对比真实标注和模型预测,开发者可以直观评估模型在不同训练阶段的性能表现,包括:
- 边界框定位准确性
- 类别识别正确率
- 误检和漏检情况
最佳实践
- 定期检查日志:建议在每个训练周期后检查预测结果,及时发现模型学习中的问题
- 注意样本选择:框架通常会选择验证集中的代表性样本进行记录
- 结合指标分析:将可视化结果与mAP等量化指标结合分析,全面评估模型性能
Super-Gradients的这种可视化日志功能大大简化了目标检测模型的调试和优化过程,使开发者能够更高效地训练出高性能的检测模型。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704