XState Store 3.4.0 发布:原子状态管理新特性解析
XState 是一个基于状态机和状态图的 JavaScript/TypeScript 库,用于管理复杂应用的状态。其中的 @xstate/store 模块提供了轻量级的状态管理解决方案。最新发布的 3.4.0 版本引入了一个重要的新特性 —— createAtom() API,这为状态管理带来了更灵活的组合能力。
原子状态管理概念
原子状态(Atom)是现代状态管理中的一个重要概念,它代表应用中最小的、不可分割的状态单元。与传统的全局状态树不同,原子状态允许开发者将状态分解为独立的单元,然后按需组合这些单元,形成更复杂的派生状态。
createAtom() 核心功能
基础原子创建
createAtom() 最简单的用法是创建一个具有初始值的原子状态:
const countAtom = createAtom(0);
这个原子状态可以通过 get() 方法读取当前值,通过 set() 方法更新值:
countAtom.get(); // 读取当前值
countAtom.set(1); // 直接设置新值
countAtom.set((prev) => prev + 1); // 通过函数更新
响应式订阅
原子状态支持订阅模式,当状态变化时会通知所有订阅者:
countAtom.subscribe((value) => {
console.log('新值:', value);
});
派生原子状态
createAtom() 的强大之处在于能够基于其他原子或 Store 创建派生状态:
const nameAtom = createAtom('hello');
const countAtom = createAtom(3);
const combinedAtom = createAtom((read) =>
read(nameAtom).repeat(read(countAtom))
);
在这个例子中,combinedAtom 会自动追踪其依赖的 nameAtom 和 countAtom,当任一依赖变化时,派生状态会自动重新计算。
与 Store 集成
createAtom() 不仅能组合其他原子,还能与 XState 的 Store 无缝集成:
const countAtom = createAtom(0);
const nameStore = createStore({
context: { name: 'David' }
// ... 其他 Store 配置
});
const combinedAtom = createAtom(
(read) => `${read(nameStore).context.name} ${read(countAtom)}`
);
这种集成能力使得开发者可以混合使用原子状态和状态机/状态图,根据场景选择最适合的抽象层级。
技术实现分析
从实现角度看,createAtom() 采用了响应式编程范式:
- 依赖追踪:通过
read函数在计算过程中自动收集依赖 - 惰性求值:派生状态只在被访问或依赖变化时才重新计算
- 变更传播:当原子状态变化时,会通知所有依赖它的派生状态和订阅者
这种实现方式既保证了效率(避免不必要的计算),又提供了良好的开发体验(自动化的依赖管理)。
使用场景建议
createAtom() 特别适合以下场景:
- 局部状态管理:组件内部的复杂状态逻辑
- 跨组件共享状态:多个组件需要访问的共享状态
- 派生状态:基于多个状态计算得出的数据
- 渐进式状态管理:从小型应用到大型应用的平滑过渡
总结
XState Store 3.4.0 引入的 createAtom() 为开发者提供了更灵活、更组合式的状态管理方案。它填补了简单状态管理和完整状态机之间的空白,使得开发者可以根据应用复杂度选择合适的抽象层级。这种原子状态管理模式与现有的 Store 系统良好集成,为构建可维护、可扩展的前端应用提供了新的工具选择。
对于已经在使用 XState 的开发者,可以逐步尝试将部分状态迁移到原子模型中;对于新项目,则可以考虑直接从原子状态开始,随着复杂度增长再引入状态机等更结构化的方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00