MaterialX 1.39.2版本发布:专业材质创作工具的重大更新
MaterialX是一个开源的材质定义和交换标准,由Academy Software Foundation维护。它被广泛应用于视觉效果、动画制作和游戏开发等领域,为不同软件和渲染器之间的材质交换提供了统一的解决方案。MaterialX通过节点图的形式描述材质,支持多种渲染后端,包括GLSL、OSL、MDL等。
新增功能亮点
1. 新增高级BSDF模型支持
最新版本引入了Chiang Hair BSDF模型,为毛发渲染提供了更专业的解决方案。该模型在硬件着色语言和MDL中已实现初步支持,能够更真实地模拟各类毛发材质的光学特性。
同时,团队还添加了对迪士尼原则性着色模型的支持。这一广受欢迎的着色模型现在以语言无关的节点图形式实现,使艺术家能够跨平台使用这一业界标准。
2. 增强的纹理与颜色处理
新版本引入了通用颜色渐变节点,提供多达10个控制点的灵活渐变调节能力。这一功能极大扩展了艺术家的创作空间,特别是在创建复杂渐变纹理时。
Worley噪声节点新增了"实体单元"模式,为金属片材质等特殊效果开辟了新的艺术可能性。这种噪声模式能够产生更清晰的单元边界,特别适合模拟金属表面微粒效果。
3. 核心架构改进
数据库引用功能的加入显著提升了着色器生成性能。这一优化允许更高效地管理和重用材质数据,特别适合大型项目。
自定义结构类型的支持为高级用户提供了更大的灵活性,使他们能够定义和使用自己的数据结构类型,扩展了MaterialX的表达能力。
渲染与着色器改进
1. 跨格式转换增强
标准表面到glTF PBR的转换图中新增了透射效果支持,改善了材质在不同格式间转换时的视觉一致性。
USD预览表面转换图现在支持涂层发射效果,确保从MaterialX到USD的材质转换不会丢失重要的视觉效果特性。
2. 着色语言支持升级
硬件着色语言新增了对视图方向空间的支持,为基于视角的效果提供了更直接的实现方式。
MDL支持已升级至1.9版本,确保用户能够利用最新的材质定义语言特性。同时,团队也提高了OSL的最低版本要求至1.12.6,专注于维护与现代OSL版本的兼容性。
工具与用户体验优化
1. 渲染与测试工具改进
MaterialXRender新增了图像下采样功能,为处理高分辨率纹理提供了更多选择。渲染测试工具现在支持图像差异统计,使质量对比更加量化。
2. 编辑器体验提升
修复了图形编辑器中相机轨道控制的问题,使视图导航更加直观。节点粘贴的边缘情况也得到了处理,提高了工作流程的稳定性。
性能与兼容性
图形遍历性能通过优化边缘访问逻辑得到提升,减少了不必要的计算。Metal着色语言(MSL)和GLSL实现之间的代码重复被大幅减少,使维护更加高效。
USD预览表面着色模型更新至2.6版本,在保持现有资产视觉一致性的同时,提供了更现代的着色特性。
移除的过时功能
为了保持代码库的现代化,移除了对旧版OSL闭包的支持。现在MaterialX专注于与OSL 1.12及以上版本中MaterialX同步的闭包,确保着色器生成的现代性和一致性。
MaterialX 1.39.2版本的这些改进和新增功能,为材质艺术家和技术美术师提供了更强大、更灵活的工具集,同时保持了与行业标准的兼容性。无论是创建复杂的表面材质,还是在不同渲染管线间交换材质数据,这一版本都提供了显著的性能提升和工作流程优化。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00