使用KAN模型进行未知函数拟合的技术实践
2025-05-14 14:21:41作者:姚月梅Lane
KAN(Kolmogorov-Arnold Networks)是一种新型的神经网络架构,它基于Kolmogorov-Arnold表示定理,能够有效地学习和表示复杂的非线性函数关系。本文将通过一个实际案例,详细介绍如何使用KAN模型对有限元分析数据集进行函数拟合和符号回归。
数据准备与预处理
在开始建模前,首先需要准备和预处理数据。本案例中使用的数据集来自有限元分析结果,包含3个输入特征和1个输出目标值。数据加载和分割的关键步骤如下:
- 使用pandas读取Excel格式的数据文件
- 将数据转换为NumPy数组格式
- 使用train_test_split将数据划分为训练集和测试集
- 将数据转换为PyTorch张量格式
特别需要注意的是,目标值的形状应为(N,1)而非(N,),这是一个常见的错误点。正确的处理方式是在索引时使用[:,[3]]
而非[:,3]
,以确保维度正确。
KAN模型构建与训练
构建KAN模型时,我们选择了[3,3,1]的网络结构,即3个输入节点、3个隐藏节点和1个输出节点。训练过程分为几个关键阶段:
- 初始训练:使用较小的网格(grid=3)进行初步训练
- 网格细化:逐步增加网格精度(grids=[3,5,10]),通过initialize_from_another_model方法继承之前训练的参数
- 优化器选择:使用LBFGS优化器进行训练
- 正则化设置:设置lamb=0.0表示不使用正则化
训练过程中,我们发现使用torch.use_deterministic_algorithms(True)
可以提高结果的可重复性,特别是在使用LBFGS优化器时。
符号回归与公式提取
在模型训练完成后,我们使用auto_symbolic方法自动识别各激活函数的数学表达式。提供的函数库包括:
- 多项式函数:x, x², x³, x⁴
- 超越函数:exp, log, sqrt, tanh, sin
- 其他函数:abs
自动符号回归的输出显示了每个激活函数的拟合优度(R²),大多数都达到了0.999以上的高精度。例如:
- (0,0,0)节点被识别为exp函数,R²=0.9999
- (0,0,1)节点被识别为x³函数,R²=0.99998
- (1,0,0)节点被识别为sin函数,R²=0.9971
模型验证与结果分析
为了验证模型的有效性,我们进行了以下验证步骤:
- 训练/测试损失曲线:观察RMSE随训练步骤的变化,确保没有过拟合
- 蒙特卡洛模拟:将KAN模型预测结果与原始有限元分析结果对比
- 符号公式验证:手动计算符号公式的输出,与模型预测值对比
结果显示,KAN模型能够很好地捕捉数据中的非线性关系,符号公式的预测精度与神经网络预测结果基本一致。
实践中的经验总结
- 数据维度:确保输入和输出的维度正确,特别是目标值应为二维数组
- 可重复性:设置随机种子和确定性算法可以提高结果的可重复性
- 网格细化:逐步增加网格精度可以获得更好的拟合效果
- 符号回归:auto_symbolic后的进一步训练可以优化仿射变换参数
- 工程判断:对于某些必须保留的输入特征,可能需要手动干预符号回归过程
KAN模型在函数拟合和符号回归方面展现出强大的能力,特别适用于从复杂数据中提取可解释的数学表达式。通过本案例的实践,我们验证了KAN在工程应用中的实用价值。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
211
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
JavaScript
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194