使用KAN模型进行未知函数拟合的技术实践
2025-05-14 04:50:35作者:姚月梅Lane
KAN(Kolmogorov-Arnold Networks)是一种新型的神经网络架构,它基于Kolmogorov-Arnold表示定理,能够有效地学习和表示复杂的非线性函数关系。本文将通过一个实际案例,详细介绍如何使用KAN模型对有限元分析数据集进行函数拟合和符号回归。
数据准备与预处理
在开始建模前,首先需要准备和预处理数据。本案例中使用的数据集来自有限元分析结果,包含3个输入特征和1个输出目标值。数据加载和分割的关键步骤如下:
- 使用pandas读取Excel格式的数据文件
- 将数据转换为NumPy数组格式
- 使用train_test_split将数据划分为训练集和测试集
- 将数据转换为PyTorch张量格式
特别需要注意的是,目标值的形状应为(N,1)而非(N,),这是一个常见的错误点。正确的处理方式是在索引时使用[:,[3]]
而非[:,3]
,以确保维度正确。
KAN模型构建与训练
构建KAN模型时,我们选择了[3,3,1]的网络结构,即3个输入节点、3个隐藏节点和1个输出节点。训练过程分为几个关键阶段:
- 初始训练:使用较小的网格(grid=3)进行初步训练
- 网格细化:逐步增加网格精度(grids=[3,5,10]),通过initialize_from_another_model方法继承之前训练的参数
- 优化器选择:使用LBFGS优化器进行训练
- 正则化设置:设置lamb=0.0表示不使用正则化
训练过程中,我们发现使用torch.use_deterministic_algorithms(True)
可以提高结果的可重复性,特别是在使用LBFGS优化器时。
符号回归与公式提取
在模型训练完成后,我们使用auto_symbolic方法自动识别各激活函数的数学表达式。提供的函数库包括:
- 多项式函数:x, x², x³, x⁴
- 超越函数:exp, log, sqrt, tanh, sin
- 其他函数:abs
自动符号回归的输出显示了每个激活函数的拟合优度(R²),大多数都达到了0.999以上的高精度。例如:
- (0,0,0)节点被识别为exp函数,R²=0.9999
- (0,0,1)节点被识别为x³函数,R²=0.99998
- (1,0,0)节点被识别为sin函数,R²=0.9971
模型验证与结果分析
为了验证模型的有效性,我们进行了以下验证步骤:
- 训练/测试损失曲线:观察RMSE随训练步骤的变化,确保没有过拟合
- 蒙特卡洛模拟:将KAN模型预测结果与原始有限元分析结果对比
- 符号公式验证:手动计算符号公式的输出,与模型预测值对比
结果显示,KAN模型能够很好地捕捉数据中的非线性关系,符号公式的预测精度与神经网络预测结果基本一致。
实践中的经验总结
- 数据维度:确保输入和输出的维度正确,特别是目标值应为二维数组
- 可重复性:设置随机种子和确定性算法可以提高结果的可重复性
- 网格细化:逐步增加网格精度可以获得更好的拟合效果
- 符号回归:auto_symbolic后的进一步训练可以优化仿射变换参数
- 工程判断:对于某些必须保留的输入特征,可能需要手动干预符号回归过程
KAN模型在函数拟合和符号回归方面展现出强大的能力,特别适用于从复杂数据中提取可解释的数学表达式。通过本案例的实践,我们验证了KAN在工程应用中的实用价值。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5