Ragas项目中测试数据生成时缺失Answer列的解决方案
2025-05-26 06:58:09作者:申梦珏Efrain
在Ragas项目中使用TestsetGenerator生成测试数据时,开发者可能会遇到一个常见问题:生成的测试数据集中缺少关键的"answer"列,导致后续评估时出现ValueError错误。本文将深入分析该问题的成因,并提供完整的解决方案。
问题背景分析
当开发者使用Ragas的TestsetGenerator模块生成测试数据集时,默认情况下生成的数据集包含question、contexts等列,但缺少answer列。而Ragas的评估指标如faithfulness等需要answer列才能进行计算,因此会抛出ValueError异常。
核心解决方案
要解决这个问题,我们需要手动为测试数据集生成answer列。以下是具体实现步骤:
方法一:使用查询引擎生成答案
对于已经构建了RAG系统的开发者,可以通过查询引擎为每个问题生成答案:
def generate_response(query_engine, question):
response = query_engine.query(question)
return {
"answer": response.response,
"contexts": [c.node.get_content() for c in response.source_nodes],
}
def generate_ragas_dataset(query_engine, test_df):
test_questions = test_df["question"].values
responses = [generate_response(query_engine, q) for q in tqdm(test_questions)]
dataset_dict = {
"question": test_questions,
"answer": [response["answer"] for response in responses],
"contexts": [response["contexts"] for response in responses],
}
return Dataset.from_dict(dataset_dict)
方法二:直接使用LLM生成答案
如果没有现成的查询引擎,可以直接调用语言模型生成答案:
answers = [llm.invoke(question).content for question in test_df["question"]]
test_df["answer"] = answers
使用Azure OpenAI API的特殊处理
当使用Azure OpenAI API时,需要特别注意配置:
from llama_index.embeddings.openai import OpenAIEmbedding
embed_model = OpenAIEmbedding(api_type="azure")
潜在问题与注意事项
-
评估偏差风险:如果使用相同的LLM生成测试问题和评估答案,可能会导致评估结果存在偏差。建议使用不同的模型分别生成问题和评估答案。
-
数据格式转换:Ragas的evaluate方法需要Dataset对象,因此可能需要将Pandas DataFrame转换为Dataset格式:
from datasets import Dataset
final_dataset = Dataset.from_pandas(test_df)
- 性能考量:生成答案的过程可能需要较长时间,特别是对于大型测试集,建议使用批处理或异步处理优化性能。
通过以上方法,开发者可以成功为Ragas测试数据集添加answer列,确保后续评估流程的顺利进行。在实际应用中,建议根据具体场景选择最适合的答案生成方式,并注意评估过程中的潜在偏差问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350