PFL-Non-IID 开源项目教程
2024-08-10 11:07:01作者:宣海椒Queenly
本教程将引导您了解 PFL-Non-IID
项目,这是一个专注于处理非独立同分布(Non-IID)数据的个性化联邦学习(Personalized Federated Learning)框架。以下是项目的三个核心部分:
1. 目录结构及介绍
PFL-Non-IID/
├── datasets/ // 存放数据集生成脚本
│ ├── generate_tiny_imagenet.py
├── models/ // 包含不同模型定义
├── trainers/ // 训练脚本
│ ├── fedavg.py
│ ├── fedprox.py
└── config.yaml // 主配置文件
datasets
: 包含用于生成模拟Non-IID数据集的Python脚本。models
: 各种模型实现,可以是用于示例的简单模型或复杂网络架构。trainers
: 不同的训练策略,如FedAvg和FedProx等,可在此找到对应的Python实现。config.yaml
: 项目的主要配置文件,用来设置训练参数。
2. 项目的启动文件介绍
在 PFL-Non-IID
中,训练通常通过调用 trainers
文件夹中的脚本来启动。例如,如果你想使用FedAvg算法进行训练,你可以运行以下命令:
python trainers/fedavg.py --config config.yaml
trainers/fedavg.py
是一个典型的训练脚本,它会加载配置文件(config.yaml
),初始化模型、数据和训练参数,然后执行多轮的通信和更新过程。
3. 项目的配置文件介绍
config.yaml
配置文件包含了项目的核心设置,例如:
data:
dataset: mnist # 使用的数据集(可以是mnist, cifar10, 等)
n_clients: 10 # 客户端数量
client_ratio: 0.1 # 每轮参与训练的客户端比例
non_iid_type: dir # 非IID类型(dir, noise 或 balance)
model:
name: cnn # 模型名称(对应models文件夹下的模型)
epochs: 10 # 每个客户端上的本地训练epoch数
optimizer:
name: sgd # 优化器(支持sgd, adam等)
lr: 0.01 # 学习率
training:
communication_rounds: 100 # 联邦学习的总轮数
server_lr: 0.1 # 服务器端的学习率(用于FedProx等方法)
use_fedprox: false # 是否启用FedProx正则化
这个配置文件允许你自定义数据集、模型参数、优化器设置以及训练流程的各个方面。根据需求,您可以修改此文件以适应不同的实验条件。
总结,PFL-Non-IID
提供了一个灵活的平台来研究和实施个性化的非IID数据环境下的联邦学习算法。通过理解其目录结构、启动文件和配置文件,您可以快速上手并进行自己的实验。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133