PFL-Non-IID 开源项目教程
2024-08-10 11:07:01作者:宣海椒Queenly
本教程将引导您了解 PFL-Non-IID
项目,这是一个专注于处理非独立同分布(Non-IID)数据的个性化联邦学习(Personalized Federated Learning)框架。以下是项目的三个核心部分:
1. 目录结构及介绍
PFL-Non-IID/
├── datasets/ // 存放数据集生成脚本
│ ├── generate_tiny_imagenet.py
├── models/ // 包含不同模型定义
├── trainers/ // 训练脚本
│ ├── fedavg.py
│ ├── fedprox.py
└── config.yaml // 主配置文件
datasets
: 包含用于生成模拟Non-IID数据集的Python脚本。models
: 各种模型实现,可以是用于示例的简单模型或复杂网络架构。trainers
: 不同的训练策略,如FedAvg和FedProx等,可在此找到对应的Python实现。config.yaml
: 项目的主要配置文件,用来设置训练参数。
2. 项目的启动文件介绍
在 PFL-Non-IID
中,训练通常通过调用 trainers
文件夹中的脚本来启动。例如,如果你想使用FedAvg算法进行训练,你可以运行以下命令:
python trainers/fedavg.py --config config.yaml
trainers/fedavg.py
是一个典型的训练脚本,它会加载配置文件(config.yaml
),初始化模型、数据和训练参数,然后执行多轮的通信和更新过程。
3. 项目的配置文件介绍
config.yaml
配置文件包含了项目的核心设置,例如:
data:
dataset: mnist # 使用的数据集(可以是mnist, cifar10, 等)
n_clients: 10 # 客户端数量
client_ratio: 0.1 # 每轮参与训练的客户端比例
non_iid_type: dir # 非IID类型(dir, noise 或 balance)
model:
name: cnn # 模型名称(对应models文件夹下的模型)
epochs: 10 # 每个客户端上的本地训练epoch数
optimizer:
name: sgd # 优化器(支持sgd, adam等)
lr: 0.01 # 学习率
training:
communication_rounds: 100 # 联邦学习的总轮数
server_lr: 0.1 # 服务器端的学习率(用于FedProx等方法)
use_fedprox: false # 是否启用FedProx正则化
这个配置文件允许你自定义数据集、模型参数、优化器设置以及训练流程的各个方面。根据需求,您可以修改此文件以适应不同的实验条件。
总结,PFL-Non-IID
提供了一个灵活的平台来研究和实施个性化的非IID数据环境下的联邦学习算法。通过理解其目录结构、启动文件和配置文件,您可以快速上手并进行自己的实验。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511