QueryDSL 5.1.0 生成代码时使用Jakarta注解的解决方案
在使用QueryDSL 5.1.0版本时,开发者可能会遇到一个关于代码生成注解的问题。当项目从Javax迁移到Jakarta EE后,QueryDSL生成的Q类仍然使用了javax.annotation.Generated或javax.annotation.processing.Generated注解,而不是预期的jakarta.annotation.Generated注解。
问题背景
QueryDSL是一个流行的Java查询框架,它通过APT(Annotation Processing Tool)在编译时生成查询相关的元模型类(Q类)。在Java EE向Jakarta EE迁移的过程中,许多注解的包名从javax变更为jakarta,这包括常用的@Generated注解。
问题分析
默认情况下,QueryDSL的代码生成器会优先使用javax.annotation.processing.Generated,其次是javax.annotation.Generated。即使在项目中使用了带有jakarta分类器的QueryDSL依赖(querydsl-jpa和querydsl-apt),这个默认行为也不会自动改变。
解决方案
要强制QueryDSL使用jakarta.annotation.Generated注解生成代码,可以通过以下配置实现:
- 在Maven项目的pom.xml中,配置maven-compiler-plugin插件:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<compilerArgs>
<arg>-Aquerydsl.generatedAnnotationClass=jakarta.annotation.Generated</arg>
</compilerArgs>
</configuration>
</plugin>
- 对于Gradle项目,可以在build.gradle中配置:
tasks.withType(JavaCompile) {
options.compilerArgs << "-Aquerydsl.generatedAnnotationClass=jakarta.annotation.Generated"
}
技术原理
这个解决方案利用了Java注解处理器(Annotation Processor)的选项传递机制。QueryDSL的APT处理器会读取名为"querydsl.generatedAnnotationClass"的处理器选项,开发者可以通过编译器参数来设置这个选项值。
在QueryDSL内部,GeneratedAnnotationResolver类负责解析应该使用的Generated注解类。虽然当前版本中javax注解的优先级高于jakarta,但通过显式配置可以绕过这个默认行为。
最佳实践建议
- 对于新项目,建议从一开始就配置使用jakarta.annotation.Generated
- 迁移项目时,除了配置QueryDSL外,还应确保项目中移除了所有javax.annotation的依赖
- 考虑在团队内部文档中记录这个配置,方便新成员快速上手
- 如果使用IDE进行开发,确保IDE的编译配置也包含了相同的参数
未来展望
随着Jakarta EE的普及,未来版本的QueryDSL很可能会调整默认行为,优先使用jakarta.annotation.Generated。但在当前版本中,显式配置仍然是最可靠的解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00