QueryDSL 5.1.0 生成代码时使用Jakarta注解的解决方案
在使用QueryDSL 5.1.0版本时,开发者可能会遇到一个关于代码生成注解的问题。当项目从Javax迁移到Jakarta EE后,QueryDSL生成的Q类仍然使用了javax.annotation.Generated或javax.annotation.processing.Generated注解,而不是预期的jakarta.annotation.Generated注解。
问题背景
QueryDSL是一个流行的Java查询框架,它通过APT(Annotation Processing Tool)在编译时生成查询相关的元模型类(Q类)。在Java EE向Jakarta EE迁移的过程中,许多注解的包名从javax变更为jakarta,这包括常用的@Generated注解。
问题分析
默认情况下,QueryDSL的代码生成器会优先使用javax.annotation.processing.Generated,其次是javax.annotation.Generated。即使在项目中使用了带有jakarta分类器的QueryDSL依赖(querydsl-jpa和querydsl-apt),这个默认行为也不会自动改变。
解决方案
要强制QueryDSL使用jakarta.annotation.Generated注解生成代码,可以通过以下配置实现:
- 在Maven项目的pom.xml中,配置maven-compiler-plugin插件:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<compilerArgs>
<arg>-Aquerydsl.generatedAnnotationClass=jakarta.annotation.Generated</arg>
</compilerArgs>
</configuration>
</plugin>
- 对于Gradle项目,可以在build.gradle中配置:
tasks.withType(JavaCompile) {
options.compilerArgs << "-Aquerydsl.generatedAnnotationClass=jakarta.annotation.Generated"
}
技术原理
这个解决方案利用了Java注解处理器(Annotation Processor)的选项传递机制。QueryDSL的APT处理器会读取名为"querydsl.generatedAnnotationClass"的处理器选项,开发者可以通过编译器参数来设置这个选项值。
在QueryDSL内部,GeneratedAnnotationResolver类负责解析应该使用的Generated注解类。虽然当前版本中javax注解的优先级高于jakarta,但通过显式配置可以绕过这个默认行为。
最佳实践建议
- 对于新项目,建议从一开始就配置使用jakarta.annotation.Generated
- 迁移项目时,除了配置QueryDSL外,还应确保项目中移除了所有javax.annotation的依赖
- 考虑在团队内部文档中记录这个配置,方便新成员快速上手
- 如果使用IDE进行开发,确保IDE的编译配置也包含了相同的参数
未来展望
随着Jakarta EE的普及,未来版本的QueryDSL很可能会调整默认行为,优先使用jakarta.annotation.Generated。但在当前版本中,显式配置仍然是最可靠的解决方案。
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









