Scanpy中Leiden聚类结果不一致问题的技术分析
2025-07-04 13:51:02作者:柏廷章Berta
问题背景
在生物信息学单细胞数据分析工具Scanpy的使用过程中,用户报告了一个关于Leiden聚类结果不一致的问题。具体表现为:在Scanpy 1.9.3和1.10.4版本中,相同的输入数据使用Leiden聚类算法会得到不同的结果,而理论上这两个版本的默认行为应该保持一致。
问题本质
经过深入分析,发现问题的根源在于Scanpy内部对重复数据处理方式的变化。在1.10.4版本中,Scanpy对邻居搜索(nearest neighbor search)的实现进行了重构,从使用sklearn.metrics.pairwise_distances改为使用sklearn.neighbors.KNeighborsTransformer。这一变化导致了对重复数据的处理方式发生了改变。
技术细节解析
-
邻居搜索算法差异:
- 旧版本(1.9.3)使用
pairwise_distances计算所有成对距离 - 新版本(1.10.4)使用近似最近邻算法,效率更高但处理重复数据时行为不同
- 旧版本(1.9.3)使用
-
重复数据处理:
- 当数据中存在完全相同的行(重复样本)时,不同算法对"哪个样本更近"的判断可能不同
- 旧版本在某些平台(如macOS ARM64)上能产生稳定结果
- 新版本对重复数据的处理更加严格,可能导致邻居关系变化
-
影响范围:
- 主要影响存在重复样本的数据集
- 可能导致邻居图和后续聚类结果变化
- 对无重复数据的分析通常没有影响
解决方案
对于需要严格可重复性的用户,可以采用以下方法:
-
数据预处理:
- 检查并移除数据中的重复样本
- 对数据进行轻微扰动以避免完全相同的行
-
使用特定转换器:
from sklearn.metrics import pairwise_distances from scanpy.neighbors import _get_indices_distances_from_dense_matrix, _get_sparse_matrix_from_indices_distances class PairwiseDistancesTransformer: def __init__(self, n_neighbors=15, metric="euclidean"): self.n_neighbors = n_neighbors self.metric = metric def fit_transform(self, X): d_arr = pairwise_distances(X, metric=self.metric) ind, dist = _get_indices_distances_from_dense_matrix(d_arr, self.n_neighbors+1) return _get_sparse_matrix_from_indices_distances(ind, dist, keep_self=True) -
版本控制:
- 明确记录使用的Scanpy版本
- 必要时固定依赖版本确保结果可重复
最佳实践建议
-
数据质量控制:
- 分析前检查数据是否存在重复样本
- 考虑使用
sc.pp.filter_cells等函数进行数据清洗
-
可重复性保障:
- 对于关键分析,记录完整的软件环境
- 考虑使用容器技术(如Docker)固化分析环境
-
结果验证:
- 对重要发现进行多方法交叉验证
- 在不同参数设置下检查结果的稳定性
总结
Scanpy中Leiden聚类结果不一致的问题揭示了生物信息学分析中一个常见但容易被忽视的问题——重复数据处理。这一案例提醒我们:
- 软件更新可能改变对特殊情况的处理方式
- 数据质量对分析结果有重要影响
- 可重复性研究需要全面的环境记录
通过理解这一问题的本质,用户可以更好地设计分析流程,确保研究结果的可重复性和可靠性。对于单细胞数据分析,建议在正式分析前进行充分的数据质量控制和预处理,以避免类似问题的发生。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896