Scanpy中Leiden聚类结果不一致问题的技术分析
2025-07-04 13:51:02作者:柏廷章Berta
问题背景
在生物信息学单细胞数据分析工具Scanpy的使用过程中,用户报告了一个关于Leiden聚类结果不一致的问题。具体表现为:在Scanpy 1.9.3和1.10.4版本中,相同的输入数据使用Leiden聚类算法会得到不同的结果,而理论上这两个版本的默认行为应该保持一致。
问题本质
经过深入分析,发现问题的根源在于Scanpy内部对重复数据处理方式的变化。在1.10.4版本中,Scanpy对邻居搜索(nearest neighbor search)的实现进行了重构,从使用sklearn.metrics.pairwise_distances改为使用sklearn.neighbors.KNeighborsTransformer。这一变化导致了对重复数据的处理方式发生了改变。
技术细节解析
-
邻居搜索算法差异:
- 旧版本(1.9.3)使用
pairwise_distances计算所有成对距离 - 新版本(1.10.4)使用近似最近邻算法,效率更高但处理重复数据时行为不同
- 旧版本(1.9.3)使用
-
重复数据处理:
- 当数据中存在完全相同的行(重复样本)时,不同算法对"哪个样本更近"的判断可能不同
- 旧版本在某些平台(如macOS ARM64)上能产生稳定结果
- 新版本对重复数据的处理更加严格,可能导致邻居关系变化
-
影响范围:
- 主要影响存在重复样本的数据集
- 可能导致邻居图和后续聚类结果变化
- 对无重复数据的分析通常没有影响
解决方案
对于需要严格可重复性的用户,可以采用以下方法:
-
数据预处理:
- 检查并移除数据中的重复样本
- 对数据进行轻微扰动以避免完全相同的行
-
使用特定转换器:
from sklearn.metrics import pairwise_distances from scanpy.neighbors import _get_indices_distances_from_dense_matrix, _get_sparse_matrix_from_indices_distances class PairwiseDistancesTransformer: def __init__(self, n_neighbors=15, metric="euclidean"): self.n_neighbors = n_neighbors self.metric = metric def fit_transform(self, X): d_arr = pairwise_distances(X, metric=self.metric) ind, dist = _get_indices_distances_from_dense_matrix(d_arr, self.n_neighbors+1) return _get_sparse_matrix_from_indices_distances(ind, dist, keep_self=True) -
版本控制:
- 明确记录使用的Scanpy版本
- 必要时固定依赖版本确保结果可重复
最佳实践建议
-
数据质量控制:
- 分析前检查数据是否存在重复样本
- 考虑使用
sc.pp.filter_cells等函数进行数据清洗
-
可重复性保障:
- 对于关键分析,记录完整的软件环境
- 考虑使用容器技术(如Docker)固化分析环境
-
结果验证:
- 对重要发现进行多方法交叉验证
- 在不同参数设置下检查结果的稳定性
总结
Scanpy中Leiden聚类结果不一致的问题揭示了生物信息学分析中一个常见但容易被忽视的问题——重复数据处理。这一案例提醒我们:
- 软件更新可能改变对特殊情况的处理方式
- 数据质量对分析结果有重要影响
- 可重复性研究需要全面的环境记录
通过理解这一问题的本质,用户可以更好地设计分析流程,确保研究结果的可重复性和可靠性。对于单细胞数据分析,建议在正式分析前进行充分的数据质量控制和预处理,以避免类似问题的发生。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1