Elasticsearch-Py 客户端新增 update_trained_model_deployment 方法解析
2025-06-14 09:40:11作者:牧宁李
在机器学习模型部署和管理领域,Elasticsearch 8.13版本引入了一个重要的功能更新——通过API动态调整已部署模型的计算资源分配。作为配套的Python客户端elasticsearch-py在8.13.2版本中同步实现了这一功能,本文将深入解析这一特性的技术细节和使用场景。
功能背景
在分布式机器学习场景中,模型部署后的资源分配往往需要根据实际负载进行动态调整。传统做法需要先停止模型服务,重新配置后再部署,这会导致服务中断。Elasticsearch 8.13引入的模型部署更新API解决了这一痛点,允许在不中断服务的情况下调整计算资源。
方法实现
elasticsearch-py客户端在MlClient类中新增了update_trained_model_deployment方法,其核心参数包括:
- model_id:必需参数,指定要更新的模型ID
- body:包含更新配置的字典,主要支持number_of_allocations字段
- 其他可选参数如timeout等
典型调用示例如下:
response = client.ml.update_trained_model_deployment(
model_id="my-elser-model",
body={"number_of_allocations": 4}
)
技术原理
该方法底层调用Elasticsearch的_update_trained_model_deployment API,实现原理是:
- 协调节点接收更新请求
- 验证请求参数和当前部署状态
- 在不中断现有推理请求的情况下
- 动态调整分配的计算资源(增加或减少)
- 返回操作结果
使用场景
这一功能特别适用于以下场景:
- 流量波动处理:在预测请求高峰期临时增加分配数
- 成本优化:在业务低谷期减少资源占用
- 渐进式扩展:根据性能监控指标逐步调整资源
- A/B测试:为不同版本的模型分配不同计算资源
注意事项
使用该功能时需要注意:
- 调整幅度不宜过大,建议逐步增减
- 监控系统资源使用情况,避免过度分配
- 某些模型类型可能有最小分配数限制
- 变更后建议观察模型性能指标
版本兼容性
该功能要求:
- Elasticsearch服务端版本≥8.13
- elasticsearch-py客户端版本≥8.13.2
- 对于Serverless环境同样适用
通过这一功能,开发者可以更灵活地管理机器学习模型的资源使用,实现更高效的推理服务运维。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134