PixelFlasher项目中的KernelSU-Next补丁执行问题分析与解决
问题背景
在Pixel 7 Pro设备上使用PixelFlasher工具进行KernelSU-Next(非LKM模式)补丁时,用户遇到了pf_patch.sh脚本无法执行的问题。该问题发生在设备已解锁Bootloader并恢复至出厂设置后,尝试通过PixelFlasher工具进行内核补丁的过程中。
问题现象
当用户尝试通过PixelFlasher执行KernelSU-Next补丁时,系统报告错误:
/bin/sh: 1: /data/local/tmp/pf_patch.sh: not found
尽管通过adb shell手动检查确认脚本文件确实存在于指定路径,且权限设置正确(755),但通过PixelFlasher自动执行时仍然失败。
技术分析
1. 执行环境差异
通过深入分析发现,问题根源在于shell执行环境的差异:
- 手动执行:通过adb shell直接执行脚本时,使用的是设备上的
/system/bin/sh(mksh) - 自动执行:PixelFlasher通过adb命令执行时,系统错误地尝试使用本地主机的
/bin/sh(dash)
2. Shell解析器路径问题
设备端脚本的shebang明确指定了#!/system/bin/sh,但执行时却被主机环境的shell解释器拦截。这表明adb命令在执行远程脚本时存在路径解析问题。
3. 解决方案验证
通过以下两种方式验证了解决方案的有效性:
-
引号包裹命令:
adb -s 设备ID shell "cd /data/local/tmp; /data/local/tmp/pf_patch.sh"这种方式强制在设备端shell环境中执行整个命令序列。
-
直接指定完整路径:
adb -s 设备ID shell /system/bin/sh /data/local/tmp/pf_patch.sh
两种方式都能成功执行补丁脚本,生成正确的内核镜像文件。
解决方案实现
基于以上分析,PixelFlasher项目采取了以下改进措施:
-
命令执行方式优化:在所有adb shell命令执行处添加引号包裹,确保命令在设备端shell环境中正确解析。
-
执行环境隔离:明确指定使用设备端的
/system/bin/sh作为解释器,避免与主机环境冲突。 -
错误处理增强:增加更详细的错误日志记录,帮助用户快速定位类似问题。
技术启示
这个案例揭示了Android开发中常见的一个陷阱:混合执行环境问题。开发者在编写跨主机-设备执行的自动化脚本时需要注意:
- 明确区分主机和设备的执行环境
- 谨慎处理路径和shell解释器指定
- 考虑不同Android版本和厂商定制的环境差异
- 增加环境检查机制,提前发现潜在问题
总结
通过分析PixelFlasher项目中KernelSU-Next补丁执行失败的问题,我们不仅解决了特定的技术障碍,更重要的是建立了一套更健壮的跨环境脚本执行方案。这种方案不仅适用于当前问题,也为处理类似场景提供了参考模式,体现了在Android系统工具开发中环境隔离和明确执行路径的重要性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00