首页
/ ChatGLM3多卡部署中的设备一致性错误分析与解决方案

ChatGLM3多卡部署中的设备一致性错误分析与解决方案

2025-05-16 04:46:43作者:裴锟轩Denise

问题背景

在ChatGLM3-6B-128K模型的多GPU部署过程中,开发者遇到了一个典型的PyTorch设备一致性错误。当尝试在配备双NVIDIA GeForce RTX 4090显卡的系统上运行基础demo(cli_demo.py)时,系统报错:"RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!"。

错误现象分析

该错误发生在模型推理阶段,具体是在处理键值缓存(key-value cache)的拼接操作时。从错误堆栈可以清晰地看到,问题出现在modeling_chatglm.py文件的第670行,当执行presents = torch.cat((presents, kv_cache), dim=0)操作时,系统检测到要拼接的两个张量分别位于不同的GPU设备上(cuda:0和cuda:1)。

值得注意的是,这个问题在ChatGLM3-6B-32K版本中不会出现,仅在128K版本中出现。这表明128K版本在多卡并行处理逻辑上可能存在特殊处理需求。

技术原理探究

在PyTorch的多GPU并行计算中,当使用类似device_map="auto"的自动分配策略时,模型的不同层可能会被分配到不同的GPU设备上。这通常不会影响前向传播的计算,因为PyTorch会自动处理跨设备的张量传输。然而,当需要显式地进行张量操作(如拼接、相加等)时,所有参与操作的张量必须位于同一设备上。

在ChatGLM3-128K的实现中,键值缓存的拼接操作没有考虑多设备情况下的设备一致性检查。当模型的某些层被分配到不同设备时,它们的输出张量自然也会位于不同设备上,这就导致了拼接操作失败。

解决方案

针对这一问题,开发者提出了几种可行的解决方案:

  1. 显式设备同步:在执行拼接操作前,将所有张量显式移动到同一设备上。例如:

    presents = torch.cat((presents.to(kv_cache.device), kv_cache), dim=0)
    
  2. 单卡运行:对于资源充足的情况,可以指定模型仅使用单一GPU运行:

    model = AutoModel.from_pretrained("THUDM/chatglm3-6b-128k", trust_remote_code=True).cuda()
    
  3. 温度参数调整:有开发者指出,当温度参数(temperature)设置过低(接近0)时,可能会引发类似问题。建议保持合理的温度设置(如0.7-1.0之间)。

实践建议

对于需要在多GPU环境部署ChatGLM3-128K模型的开发者,建议:

  1. 优先考虑使用官方最新版本的代码,其中可能已包含相关修复
  2. 在自定义修改模型代码时,特别注意所有显式张量操作的设备一致性
  3. 对于生产环境,建议进行充分的单卡和多卡性能测试,选择最优部署方案
  4. 监控GPU显存使用情况,128K版本由于上下文长度增加,对显存需求更高

总结

多GPU并行计算中的设备一致性问题是深度学习模型部署中的常见挑战。ChatGLM3-128K版本由于模型结构的特殊性,在这一问题上需要特别关注。通过理解错误本质和掌握正确的处理方法,开发者可以顺利实现模型的高效部署。随着ChatGLM3项目的持续更新,预期这类问题将得到官方更完善的解决方案。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
426
34
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
239
9
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
988
394
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69