Drake项目中Mac平台构建缓存机制的优化实践
在持续集成(CI)系统的优化过程中,构建缓存是提升效率的重要手段。本文以RobotLocomotion/drake项目为例,详细介绍其针对macOS平台的构建缓存优化实践。
背景与挑战
Drake作为一个复杂的机器人仿真框架,其构建过程涉及大量计算资源消耗。特别是在macOS平台上,由于架构差异和工具链特性,构建时间往往较长。项目团队发现,在未启用缓存的情况下,关键构建任务耗时高达37-47分钟,严重影响了开发迭代效率。
技术方案设计
项目团队制定了分阶段实施方案:
-
基准测试阶段:首先收集了macOS各构建任务的原始耗时数据,包括Bazel构建、CMake构建和wheel打包等任务,建立量化基准。
-
架构验证:确认macOS构建节点与缓存服务器位于同一可用区(AZ),确保网络延迟最小化。同时借鉴已有Ubuntu平台缓存方案的经验教训。
-
缓存策略:采用与Ubuntu平台相同的远程缓存服务器,保持服务器配置双倍容量以应对峰值负载。针对不同构建任务设置差异化的缓存策略(只读/只写/读写)。
实施效果
启用缓存后效果显著:
- Bazel持续集成构建任务从37分钟降至7-15分钟
- Bazel完整构建任务从47分钟降至约30分钟
- CMake和wheel打包任务由于特性原因,耗时保持稳定
技术细节优化
-
健康检查脚本:简化了缓存服务器的健康检查逻辑,移除了冗余参数。
-
文档同步:更新了所有内部文档和构建脚本,确保统一指向单一缓存服务器。
-
监控机制:建立了完善的性能监控体系,持续跟踪缓存命中率和构建耗时变化。
经验总结
本次优化实践表明:
-
跨平台缓存方案需要充分考虑平台特性,macOS与Linux平台在工具链和依赖管理上的差异需要特别关注。
-
基准测试是缓存优化的基础,必须建立完整的性能指标体系。
-
缓存服务器的位置选择对性能影响显著,同可用区部署是理想选择。
-
不同构建工具(Bazel/CMake)对缓存的利用效率存在差异,需要针对性优化。
该方案的成功实施为Drake项目后续的持续集成优化提供了宝贵经验,也为其他类似项目的构建优化提供了参考范例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00